
Secure Data Outsourcing Based on Threshold Secret
Sharing; Towards a More Practical Solution

Mohammad Ali Hadavi
mhadavi@ce.sharif.edu

Rasool Jalili
jalili@sharif.ir

Network Security Center
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran, +982166166665

ABSTRACT

Database outsourcing is a noteworthy solution to improve quality

of services while reducing data management costs. When data is

stored and processed out of the territory of its owner, security

becomes the first concern. Confidentiality of the outsourced data,

correctness assurance of query results, and preserving users'

access privacy are the primary requirements of secure data

outsourcing. Nevertheless, most of research activities concentrate

on confidentiality based on different encryption schemes. This

paper reports some aspects of our ongoing research on secure data

outsourcing plus our future directions. We propose a framework

to provide confidentiality and privacy based on the threshold

secret sharing. We discuss the extension points of the framework

to satisfy other requirements of secure data outsourcing as well.

1. INTRODUCTION
Storage and retrieving of data has become a big challenge for

companies and organizations. Surveys estimate data management

cost around five to ten times than that of data gathering [1]. Many

organizations prefer to concentrate their human and technical

resources on their core business functions rather than data

management activities. One nearly new idea is outsourcing data

management tasks to an external party. “Database As a Service

(DAS)” is an explanation of this approach. Database outsourcing

is a noteworthy solution due to reducing data management costs

as well as more quality services like database availability.

However, it faces with some security challenges.

Data stealing along with commercial competitions challenge the

data outsourcing scenario regarding confidentiality aspects. In

most cases, the external server hosting the outsourced data and

processing queries is untrusted in terms of the data confidentiality.

Encrypting outsourced data is the incipient solution to this

challenge. However, it imposes extra overhead on the system and

decreases the database efficiency. This is the reason that

encryption is not considered as a good solution even in

centralized in-house databases. Having some noticeable

advantages, outsourcing reintroduces encryption-related methods

and techniques to satisfy its requirements. To overcome the

efficiency problem when using encryption-based methods,

researchers investigate mechanisms for direct execution of queries

on the encrypted data. Such mechanisms provide confidentiality

in addition to efficiency as they do not typically decrypt data at

the server side in order to execute a query.

Query result correctness is another challenge in secure data

outsourcing when the external server is not honest. This issue has

not been investigated as much as confidentiality issue in database

outsourcing.

Beside encryption-based approaches, secret sharing as another

approach indicates a promising prospect to solve the challenges of

secure data outsourcing. This paper studies application of secret

sharing in secure data outsourcing. Hence, a secret sharing based

framework providing the confidentiality of data has been

introduced. Then, future work for validation, extension, or

improvement of the framework has been mentioned.

The remainder of this paper is organized as follows: Section 2

discusses basic requirements of secure data outsourcing. Section 3

briefly reviews related work. Section 4 proposes a preliminary

framework based on the threshold secret sharing scheme. Section

5 discusses areas of future work to complete the proposed

framework in order to satisfy other considerations of the DAS

model. Finally, Section 6 summarizes and concludes the paper.

For simplicity, we may refer to Secure Data Outsourcing as SDO

in the remainder of this paper.

2. BASIC REQUIREMENTS OF A SDO

SOLUTION
Despite almost a decade of research on SDO, the proposed

approaches have not been reported to have much success in

operation in the actual community/industry. This has been

basically due to many restrictions and overheads accompanied

with the current approaches. In other words, the intrinsic

requirement for SDO is to improve the existing models regarding

practicality aspects while considering security considerations. To

elaborate, we enumerate these requirements with respect to

security and practicality aspects in the following bullets. The first

four items focus on security concerns and the last three ones

concentrate on practicality issues.

• Identification of the level of trust in the server: The majority

of existing approaches assume that the server is untrusted in

terms of data confidentiality but trusted in terms of query

result correctness. A more general solution should downgrade

54

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore

the trust level and assume the server is untrusted in both

confidentiality and correctness aspects. So, the existing

models should be extended or new models be proposed to

assure the query result correctness.

• Protection against security attacks: Security threats and

attacks are one of the most important aspects which should be

considered while proposing models and frameworks for SDO.

Basically, the more tolerable the model is, the more secure

solution could be achieved. Known database attacks,

frequency attacks, size based attacks, and collusion are among

the important threats in database outsourcing scenario.

• Users' access privacy: Users' access privacy concerns the

relation between users and their queries. Privacy is one of the

primary requirements for SDO. Intruders as well as untrusted

server cannot infer wealthy information from the user’s

queries while privacy is preserved.

• Access control policy enforcement: In operational

environments, users have different access rights to database

entities. Enforcement of access control policies is one of the

important aspects of SDO. For efficiency reasons, the policies

should be enforced by the server. On the other hand, for

security reasons, the policies may be confidential and

untrusted server should not be aware of or infer about them.

• Supporting different kinds of queries: Proposed models for

SDO will be practicable if it supports execution of different

kinds of queries. Exact match queries, pattern matching for

string data, range queries, JOIN queries, and queries contain

aggregation functions like SUM, AVG, COUNT, MIN, and

MAX are among typical queries and should be supported.

• Supporting multiple and variant data types: Existing

databases contain a variety of data types, nevertheless most of

existing approaches for SDO concentrate on numeric data.

String data types, multimedia data types, and data types with a

limited number of values (like Boolean and Enumerated

types) should also be considered in order to have a realistic

solution for data outsourcing.

• Efficiency besides acceptable overhead: We need methods,

models, and techniques that are efficient besides having

acceptable overhead. In the context of SDO, storage,

communication, and computational overhead are important.

Computational and storage overhead should be considered at

the client and the server sides. Communication overhead

refers to the amount of interaction between a client and a

server (the number of passes between the client and the server

and the amount of information to be transferred) while

processing a query. Those methods in which the sever returns

extra records to the client as false hit records, introduce more

communication overhead and also computational overhead at

the client side. In such cases, clients need some computational

power to purge the received results based on the user query.

3. RELATED WORK
Most of research activities in the area of secure data outsourcing

concentrate on confidentiality of the outsourced data against

untrusted servers.

Hacigümüs et al. [27] explored the DAS model and then proposed

a solution for executing queries over encrypted data concerning

confidentiality problem [2]. In their solution, a query is processed

in four steps. At first, the user submits a query through a client.

Then, the client transforms it into a new query that is executable

on encrypted data at the server side. The server executes the query

and sends the results for the client. The client purges the results

and returns final results to the user. Hacigümüs et al. [3]

improved their work concerning query optimization. They

proposed a privacy homomorphism encryption scheme to support

aggregation queries in their model [4]. Mykletun et al. [5] showed

these encryption functions are susceptible to known plain text

attacks and reveal the encryption key. They proposed another

solution to support aggregation queries in their work.

The basic idea of [2, 3] is bucketing and indexing of attribute

values. There are different ways for bucketing values such as

equivalence-width, equivalence-depth, and using hash functions

proposed on numeric and character data [6, 7, and 8]. The index

production methods should consider query processing efficiency

while maintaining security. An adversary as well as an untrusted

server should not be able to infer about the plain data using

assigned indexes.

However, index based methods, due to their admissible efficiency,

are the most popular methods for confidentiality problem in data

outsourcing. There are some works on security analysis [10, 11]

and reducing false hits [12] for index based methods.

Some research activities to support range queries have been done.

Damiani et al. [13] used B+-tree to support range queries.

Agrawal et al. [14] proposed an Order Preserving Encryption

Scheme (OPES) for numeric data to support range queries. The

OPES encryption preserves the order of plain data in encrypted

data, so it is susceptible to known database attacks. Mansouri [26]

added randomness to OPES and proposed the ROPES as Random

Order Preserving Encryption Scheme to protect from known

database security attacks.

Agrawal et al. [1] proposed a new approach to provide

confidentiality of outsourced data using the idea of secret sharing.

They used Shamir threshold secret sharing scheme [15] to provide

confidentiality in database outsourcing. In the next section, we

extend their method and propose a preliminary framework.

Further, we give some possible future work to show this new

approach could satisfy basic requirements of SDO. Brinkman et

al. [16, 17] used secret sharing to store and query tree structured

data (such as XML) securely.

Yong et al. [18] concentrate on privacy requirement. Preserving

privacy causes an intruder or an untrusted server not to be able to

gain valuable information about queries and users who submit the

queries.

Correctness requirement of SDO refers to integrity and

completeness of query results. Integrity assurance means an

untrusted server cannot tamper the query results in an

unauthorized manner. Completeness means all of the result set is

delivered to the client. Min Xie et al. [19] provide audit-ability of

correctness via adding a limited number of records to the

outsourced database. These extra records can be produced by

randomized or deterministic methods. They prove security of their

method. Mykletun et al. [20] proposed integrity mechanisms for

simple SELECT queries. Merkle tree and cryptographic hashing

55

structures have been used in [21] to provide correctness

verification in range queries.

4. OUR PROPOSED FRAMEWORK
We use Shamir’s threshold secret sharing scheme [15] to share a

secret (data to be outsourced) between n servers. We call these

servers “Data Servers”. Subsequently, data indexes are

maintained in a separate server called “Index Server”. So, clients

interact with two kinds of servers. Data shares are stored on Data

Servers and referenced by Index Server. To distribute a secret (an

attribute value) between n Data Servers the distributor (data

owner) selects a vector X={x1, x2, …, xn} and a polynomial f(x) of

order k-1 such that the constant value of f(x) be equal to the secret.

Other coefficients are determined randomly. Regarding

randomness of f(x)’s coefficients for each attribute value, the

order of values is not preserved, i.e. a greater value may have

lower share than a lesser one, or two equal values may have

different shares. This property provides protection from frequency

attacks on Data Servers.

In the threshold secret sharing with the threshold k of n, we need

at least k shares to retrieve the secret. Secret vs is calculated by the

Lagrange interpolation with the following formula:

()∑ ∏
=

≠
=

−

−
=

k

j

k

j
ii

i

is
xx

x
xfv

j

j

1 1

0

µ
µ µ

µ

4.1 Data Servers
In a threshold (k, n) secret sharing, Data Servers store data shares

computed by f(x) of order k-1 and vector X. For each attribute

value to be shared between Data Servers, f(x) with the order of

k-1 is created. The constant value of f(x) is equal to the to-be-

shared value and the other coefficients are randomly selected. For

each value, Sharei, denoting the secret share of ith Data Server (1

≤ i ≤ n), is calculated by f(xi) where, xi is the ith member of the

vector X. X is owned by the data owner and kept hidden from

untrusted servers. Hence, even if more than k Data Servers

accumulate their shares, they cannot retrieve the secret. In this

approach, known database attacks are prevented as the order of

shares in Data Servers does not follow the real order of attribute

values due to randomized coefficients of f(x).

4.2 Index Server
To build indexes at Index Server, attribute values are encrypted

using an order preserving encryption scheme. Then, a B+-tree is

made over the encrypted values. Each leaf in the B+-tree refers to

a bucket containing record numbers of Data Servers with the

same share value of the corresponding leaf key. Then, the buckets

are encrypted and sent with the B+-tree to Index Server.

Thereafter, Index Server is responsible for any insertion, deletion,

or update in the B+-tree.

In order to insert a new record into database, the client needs to

interact with Data Servers and Index Server. At first, share values

of the record attributes are calculated and inserted into Data

Servers as a new record. Subsequently, the B+-tree in Index Server

is modified for the indexed attributes. In order to modify the B+-

tree for each indexed attribute, the new attribute value is

encrypted with the “order preserving encryption scheme” and sent

to Index Server. Index Server locates the appropriate location in

the tree and inserts it in that location. If the inserted value is

repetitive, there is a leaf with the same key in the tree. In such a

case, simply the new record number is appended to the

corresponding bucket. If the value is not repetitive, a new leaf is

inserted into the B+-tree and its bucket is created with the record

number written into it. In order to append the record number in

the corresponding bucket, the bucket is sent to the client. The

client decrypts the bucket which the item is inserted into. Then,

the bucket is encrypted and sent to Index Server.

Record removal is done by removing the related record number

from the appropriate bucket in the B+-tree. So, frequent garbage

collection is done for physical deletion of records in Data Servers.

Therefore, we need a method to distinguish logically deleted

records in Data Servers.

Although, the order of attribute values is preserved in Index

Server, adversary (that might be Index Server itself) cannot infer

any relation between encrypted values on Index Server and data

shares on Data Servers as buckets are encrypted.

Notwithstanding, Index Server might infer about the attribute

values frequency from the buckets volume. We use padding to

assimilate bucket volumes in order to prevent this threat.

4.3 Query Processing
The query processing scenario in our approach is as follows. The

values in the query predicate are encrypted in the order preserving

manner and sent to Index Server. Index Server searches for these

values in the related B+-tree and sends the corresponding buckets

to the client. The client decrypts the buckets and requests from

Data Servers to retrieve records with the numbers extracted from

decrypted buckets. When, at least k Data Servers reply to the

client, the final result can be retrieved by the client through

Lagrange interpolation.

As we saw in this scenario, Data Servers cannot be informed

about the query contents. They act as storage resources which

return records only based on their numbers. There are not any

false hits in returned results from Data Servers. Therefore, neither

the client nor Data Servers calculate data shares on Data Servers.

So, we do not need to store and find coefficients of the

polynomial f(x).

Our approach provides for both exact match and range queries.

Range queries are performed via search on the order preserved

encrypted B+ tree index. Aggregation queries are also supported

due to additive homomorphism property of secret sharing. Queries

contained MIN, MAX, and COUNT functions are executed at

Index Server without Data Servers interference.

4.4 Example
Consider the simple Employee relation in Table 1 with four

attributes ID, Name, Age, and Salary. For simplicity, assume we

restrict ourselves to search merely based on Age attribute. So, a

B+-tree is made on Age values. This B+-tree is shown in Figure 1.

In order to support range queries, the rightmost pointer of each

leaf refers to the next leaf, except the last leaf whose rightmost

pointer is null. Leaves have pointers to buckets consisting of the

appropriate record numbers. Eop in Figure 1 denotes order

preserving encryption used in B+-tree structure and E is an

arbitrary encryption function used to encrypt buckets.

56

Figure 1. B+-tree index on the Age attribute

Let n=3, k=2, and X = {x1=3, x2=1, x3=5}. So, the order of f(x) is

k-1=1 and the number of Data Servers is three. The client will be

able to retrieve the results of a query, if it receives response from

at least two Data Servers.

At Data Server side, each Data Server stores data shares of each

value for all confidential attributes. For simplicity, in this example

we only show the Salary values in Data Servers. We have ten

records in the Employee table, so the data owner creates ten

polynomials of the general form axi+b; where xi is selected from

the X vector for each Data Server and a is obtained randomly for

each polynomial. The data owner does not need to store these

random numbers. b is equal to the Salary value for each

polynomial. Figure 2 depicts the polynomials and the calculated

data shares in Data Servers. For simplicity, we assume a values

are integers between one and ten.

Suppose a user submits the query “SELECT Salary FROM

Employee WHERE Age=46”. Then, the corresponding client

sends Eop (46) to Index Server. Index Server locates the value and

returns the corresponding bucket to the client. The client decrypts

the bucket and accesses 4 and 10 as record numbers. Then, the

client requests these records from Data Servers. In our example,

Data Server 1 sends 374 and 133, Data Server 2 sends 358 and

131, and Data Server 3 sends 390 and 135 as the forth and tenth

records respectively. When at least two Data Servers respond to

the client, attribute values are retrievable through the Lagrange

interpolation. Assume the results are received from Data Server 1

and Data Server 3. The client puts the values in the Lagrange

formula and calculates the Salary for the forth and tenth records.

For example, the value 350 is obtained for the forth record by the

following relation:

0 5 0 3
374 390 350

3 5 5 3
sv

− −
= + =

− −

The client does a similar calculation to retrieve salary value of the

tenth record.

Now consider the following query with the SUM aggregation

function: “SELECT SUM (Salary) FROM Employee WHERE

Age > 50”. To execute this query, the client sends Eop(50) to

Index Server. Index Server returns those buckets referred by

leaves with values greater than 50 as their keys to the client. In

this example, four buckets are returned by Index Server. The

client decrypts them and sends the obtained record numbers to

Data Servers. Each Data Server calculates the sum of its shared

values for requested records and sends the result back to the

client. Finally, the client retrieves the final result by interpolating

received values due to additive homomorphism of secret sharing.

Such a property can be examined easily in this example.

4.5 Comparison
In this section we compare our proposed framework with some

other index-based methods [2, 3, 10, 12, and 13], encryption-

based methods [4, 5, and 14] and also secret-sharing-based

Agrawal et al.’s proposed method [1].

Similar to the Agrawal et al.’s method [1], our approach supports

different kinds of query including exact match queries, range

queries, and aggregation queries. Update, delete, and insert

operations are also supported. Except the proposed scheme by

Hacigümüs et al. [4] and the one proposed by Mykletun et al. [5],

the other published index-based methods do not support

aggregation queries. Nevertheless, their ([4] and [5]) support for

aggregation queries is either insecure or inefficient. Supporting

Polynomial Salary
2xi + 100 100
xi + 200 200

3xi + 150 150
8xi + 350 350
9xi + 200 200
xi + 210 210

4xi + 175 175

6xi + 200 200

2xi + 300 300

xi + 130 130

Salary

106
203
159
374
227
213

187

218

306

133

Data Server 1

Salary

110
205
165
390
245
215

195

230

310

135

Data Server 3

Salary

102
201
153
358
209
211

179

206

302

131

Data Server 2

Figure 2. Sharing Salary values among three Data Servers

Eop(78), Eop(80)

Eop(45)

Eop(57)

Eop(46)

Eop(80), Eop(84) Eop(78) Eop(57) Eop(46)

E (1,5,7) E (4,10) E (8,9) E (3) E (2) E (6)

Table 1. The Employee relation

ID Name Age Salary

1 Elvis 45 100

2 John 84 200

3 Mary 78 150

4 Frank 46 350

5 Bob 45 200

6 Alice 80 210

7 Henry 45 175

8 Jack 57 220

9 Gary 57 300

10 Donna 46 130

57

range queries in index-based methods depends on the bucketing

strategy and the index construction method.

Index based methods usually have some limitations for update,

insert, and delete operations. For example, the distribution of

values is used for bucketing and index construction. These

operations change the distribution and render the rebucketization

necessary. This is a time consuming work that makes index based

methods suitable for read-only data. Agrawal et al.’s method for

supporting range queries [14] is not secure against the known

database attacks. It has also the mentioned problem for update,

delete, and insert operations. This problem requires frequent re-

encryption due to adopting new data distribution. As described in

section 4, our approach supports the update, delete and insert

operations efficiently.

In our approach, similar to the Agrawal et al.’s method [1], the

received results from Data Servers do not have any false hits. This

could be considered as an advantage since it reduces the

communication and computational overhead at the client side.

Other index based methods [2, 3, and 12] produce false hits in the

server results. It is worth mentioning that those methods which do

not generate false hits at the server side face with security

challenges due to the frequency and known database attacks.

Evdokimov et al. [9] have proven that index based methods

especially the methods not generating false hits at the server side

are not secure. Damiani et al. [13] proposed a secure index based

method, but it has a large amount of communication overhead in

its query processing scenario. However, while our approach has a

considerable level of prominent security, it also enjoys the

advantages of not generating false hits and an acceptable

communication overhead compared to that of Damiani et al.’s

research.

In secure data outsourcing, usually there is a tradeoff between

efficiency and security. To the best of our knowledge, no secure

model for data outsourcing with high efficiency has been reported

yet. Our approach, while reducing the computational cost due to

usage of distribution and interpolation instead of encryption and

decryption functions, provides high level of security. Although

computational overhead in our approach is more than Agrawal et

al.’s scheme [1], it offers much more security. Our approach is

secure against known database and frequency attacks. The secret

data is retrievable only by the client who knows the X vector.

Thus, the collusion problem is addressed, i.e. Data Servers cannot

get the secret even if they collude with each other or with the

Index Server to reveal the secret.

5. FUTURE WORK
A preliminary framework based on the idea of threshold secret

sharing was proposed in Section 4. Confidentiality and privacy as

the basic requirements of SDO have been considered in our

framework. Regarding efficiency and supporting different kinds of

queries, we think this framework is a starting point for a more

realistic solution for secure data outsourcing. We believe that

extending and improving this framework to satisfy the basic

requirements of this area can help the DAS model to be more

practical. In this section, we review the possible extension points

of our approach as future work.

• Reducing the trust level to external servers: While major

proposed methods suppose the server is honest but curious,

we try to decrease the trust level and assume the server is

untrusted in terms of both confidentiality and correctness. So,

in addition to providing confidentiality, integrity and

completeness of results must be also assured. The threshold

secret sharing scheme, provides the potentiality of correctness

validation and distinguishing malicious servers in regard to

the distribution of secrets among n data servers and retrieving

form k ones (k ≤ n). A model for correctness validation with

assumptions like potentiality of collusion between untrusted

servers is an extension point of the proposed framework to

develop a plenary solution for SDO.

• Formal proof for security: The proposed solution must tolerate

different threats and security attacks. Formal proof for security

in terms of confidentiality, privacy, and correctness is required

to complete the proposed approach.

• Supporting different data types: In this study we concentrated

on numeric data in our framework. Considering different data

types especially character data has a pivotal role in practicality

of SDO. Data types such as Boolean that accept limited

number of values and multimedia which are rational to be

confidential in some modern applications should also be

explored. Fortunately, noticeable research conducted on the

area of multimedia secret sharing promises acceptability of

these data types in our framework.

• Database access control policy enforcement: We can extend

our framework to adopt the ability of applying access control

policies in multi user environments based on the secret

sharing concept. Fortunately, the secret sharing has been

shown as one of the basic concepts for structuring access

control mechanisms [22, 23, and 24]. Enforcement of policies

by untrusted server (probably with the slight data owner

involvement), update-ability of the policies, and preserving

privacy of the access control policy for untrusted server are

the most challenging issues to adopt an access control policy

enforcement mechanism in database outsourcing scenario.

Considering the above challenges, we have done some

research in the area of access control for SDO scenario which

cannot be included in this paper due to restrictions on number

of pages.

• Availability, efficiency, and security tradeoff: in the (k, n)

threshold secret sharing, data is distributed among n servers

and retrieved from at least k ones. The values of k and n affect

different aspects such as availability and efficiency, and also

the storage, communication, and computational overheads.

Study about these aspects to find a tradeoff point based on the

user requirements is another future work to produce a

desirable model.

6. CONCLUSION
Secure data outsourcing is in its adolescence and notwithstanding

reported research activities, is far away from being practical

regarding its goals and requirements. Secure data outsourcing

refers to preserving confidentiality of outsourced data, privacy of

users’ queries, and query result correctness assurance [25].

We believe that the idea of secret sharing with respect to strong

theoretical security background on the one hand, and less

computational overhead rather than encryption on the other hand,

58

indicates promising future for secure data outsourcing. Our secret

sharing based framework provides a basis to support different

kinds of queries on different data types. Additive homomorphism

property of secret sharing supports efficient execution of a wide

range of aggregation queries. Although communication and

storage overhead in secret sharing schemes seems to be high,

availability and correctness verifiability are potentially obtained.

Storage overhead in this approach is almost comparable to

database servers that use replication for availability and disaster

recovery reasons.

It seems the idea of secret sharing for secure data outsourcing, can

satisfy the basic requirements mentioned in section 2. In this

regard, concentration on adopting secret sharing for string data

without unrealistic simplification and constraints, tradeoff

analysis and security proofs based on parameters such as the

number of servers and availability measures, the correctness

assured model for the outsourced data, and access control policy

enforcement in an outsourced database are among future work in

this area.

7. REFERENCES
[1] D. Agrawal, A. El Abbadi, F. Emekci, A. Metwally,

Database management as a service: challenges and

opportunities. In Proceedings of IEEE International

Conference on Data Engineering (ICDE ’09). IEEE

Computer Society, 2009, 1709-1716.

[2] H. Hacigümüs, B. Lyer, C. Li, S. Mehrota, Executing SQL
over encrypted data in the database-service-provider model.
In proceedings of the ACM SIGMOD International
Conference on Management of Data (Madison, Wisconsin).
ACM, 2002, 216-227.

[3] H. Hacigumus, B. Iyer, S. Mehrotra, Query optimization in
encrypted database systems. In Proceedings of 10th
International Conference on Database Systems for Advanced
Applications (DASFAA’ 05). Springer, 2005, 43-55.

[4] H. Hacigumus, B. Iyer, S. Mehrotra, Efficient execution of
aggregation queries over encrypted relational databases. In
Proceedings of the 9th International Conference on
Database Systems for Advanced Applications (DASFAA’
04). Springer, 2004, 2973, 125–136.

[5] E. Mykletun, G. Tsudik, Aggregation queries in the
Database-As-a-Service model. In Proceedings of 20th
Annual IFIP WG 11.3 working conference on data and
applications security (DBSEC’ 06), Springer, 4127, 2006,
89-103.

[6] Z. Wang, J. Dai, W. E. I. Wang, B. Shi, Fast query over
encrypted character data in database. Communications in
Information and Systems, 2004, 4, 289-300.

[7] Y. Zhang, W. Li, X. Niu, A method of bucket index over
encrypted character data in database. In Proceedings of Third
International Conference on Intelligent Information Hiding
and Multimedia Signal Processing (IIHMSP’ 07), IEEE
Computer Society, 2007, 186-189.

[8] E. Goh, Secure Indexes. Cryptography ePrint Archive,
Report 2003/216, 2003.

[9] S. Evdokimov, M. Fischmann, O. Gunther. Provable security
for outsourcing database operations. In Proceedings of the
22nd International Conference on Data Engineering (ICDE
’06). IEEE Computer Society, 2006, 117.

[10] B. Hore, S. Mehrotra, G. Tsudik. A privacy-preserving index
for range queries. In Proceedings of the 30th VLDB
Conference. VLDB Endowment, 2004, 720-731.

[11] A. Ceselli, E. Damiani, S. Vimercati, S. Jajodia, S.
Paraboschi, and P. Samarati. Modeling and assessing

inference exposure in encrypted databases. ACM Trans.
Information and System Security (TISSEC), 8, 2005, 119-
152.

[12] Y. Tang, J. Yun. A method for reducing false hits in
querying encrypted databases. In Proceedings of the 8th
IEEE International Conference on E-Commerce Technology
and The 3rd IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services (CEC-EEE’ 06).
2006, 22.

[13] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S.
Paraboschi, and P. Samarati. Balancing confidentiality and
efficiency in untrusted relational DBMSs. In Proceedings of
the 10th ACM Conference on Computer and
Communications Security. ACM, 2003, 93-102.

[14] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Order preserving
encryption for numeric data. In Proceedings of the 2004
ACM SIGMOD international conference on Management of
data. ACM, 2004, 563-574.

[15] A. Shamir. How to share a secret. In Communications of the
ACM, 1979, 22, 11, 612–613.

[16] R. Brinkman, J. M. Doumen, P. H. Hartel, W. Jonker. Using
secret sharing for searching in encrypted data. In Workshop
on Secure Data Management in a Connected World (SDM’
04). Springer, LNCS 3178, 2004,18–27.

[17] R. Brinkman, B. Schoenmakers, J. M. Doumen, W. Jonker.
Experiments with queries over encrypted data using secret
sharing. In Secure Data Management VLDB 2005 workshop.
Springer, LNCS 3674, 2005, 33-46.

[18] Z. Yang, S. Zhong, R.N. Wright. Privacy-preserving queries
on encrypted data. In Proceedings of the 11th European
Symposium on Research in Computer Security (Esorics’ 06).
Springer, LNCS 4189, 2006, 479-495.

[19] M. Xie, H. Wang, J. Yin, X. Meng. Integrity auditing of
outsourced data. In proceedings of the 33rd international
conference on Very large data bases (VLDB ’07). VLDB
Endowment, 2007, 782-793.

[20] E. Mykletun, M. Narasimha, G. Tsudik. Authentication and
integrity in outsourced databases. ACM Trans. Storage
(TOS), 2, 2 (May 2006), 107-138

[21] H. Pang, A. Jain, K. Ramamritham, K. Tan. Verifying
completeness of relational query results in data publishing.
In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data (Baltimore, Maryland).
ACM, 2005, 407-418.

[22] S. Liu, W. Li, L. Wang. Towards efficient over-encryption in
outsourced databases using secret sharing, In Proceedings of
The 2nd IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2008). IEEE
Press, 2008, 1-5.

[23] C. Lin, W. Lee. Efficient secret sharing with access
structures in a hierarchy. In Proceedings of the 19th
International Conference on Advanced Information
Networking and Applications (AINA’05) (Volume 2), IEEE
Computer Society, 2005, 123-126.

[24] J Marti-Farré, C. Padro. Secret sharing schemes on access
structures with intersection number equal to one. Journal of
Discrete Applied Mathematics, 153, 3 (March 2006), 552-
563.

[25] R. Sion. Secure data outsourcing. In Proceedings of the 33rd
international conference on Very large data bases (VLDB’
07). VLDB Endowment, 2007, 1431–1432.

[26] F. Mansouri. A method for executing queries on encrypted
databases without firstly decrypting them. MSc thesis, Sharif
University of Technology, December 2008 (in Persian).

[27] H. Hacigümüs, B. Iyer, S. Mehrotra. Providing database as a

service, In Proceedings of 18th International Conference on

Data Engineering (ICDE’ 02). IEEE Computer Society,

2002, 29.

59

