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ABSTRACT
In the knowledge discovery process, clustering is an estab-
lished technique for grouping objects based on mutual simi-
larity. However, in today’s applications for each object very
many attributes are provided in large and high dimensional
databases. As multiple concepts described by different at-
tributes are mixed in the same data set, clusters are hidden
in subspace projections and do not appear in all dimensions.
Subspace clustering aims at detecting such clusters in any
projection of the database.

This work presents an overview of my dissertation on
subspace clustering models, efficient processing schemes for
these models and an objective evaluation study on subspace
clustering techniques. This work highlights several open
challenges and our research work with which we tackled
these challenges. Furthermore, as a general contribution
to the community, the benefits of our evaluation study and
our open source evaluation framework are described. Both
provide an important basis for future research and ensure
comparability and repeatability of experiment results.

1. INTRODUCTION
In the knowledge discovering process, clustering aims at

detecting groups of similar objects while separating dissimi-
lar ones. Traditional clustering approaches compute a parti-
tion of the data, grouping each object in at most one cluster
or detecting it as noise. However, it is not always the case
that an object is part of only one cluster. Multiple mean-
ingful groupings might exist for each object. The detection
of such multiple clusters describing different views on each
object is still an open challenge in recent applications.

In today’s applications, data is collected for multiple anal-
ysis tasks. In most cases, databases contain objects specified
by very many attributes. As one does not know the hidden
structure of the data, one mixes up different measurements

.

in one high dimensional database. Thus, each object can
participate in various groupings reflected in different subsets
of the attributes. For example, in customer segmentation,
objects are customers described by multiple attributes spec-
ifying their profile. A customer might be grouped by the
attributes “average traveling frequency” and “income” with
other “globetrotters” having high values in both of these
attributes. The same customer might be a “healthy oldie”
which could be specified by a high “age” and low “blood
pressure” (cf. Fig. 1). We observe for each customer multi-
ple possible behaviors which should be detected as clusters.
Thus, clusters may overlap in their clustered objects, i.e.
each object may be represented in multiple clusters. Fur-
thermore, each behavior of a customer is described by spe-
cific attributes. Thus, meaningful clusters appear only in
these specific subspace projections of the data. While the
attribute “blood pressure” is useful for the distinction of
health status, the attribute “traveling frequency” might be
irrelevant for health related groups of customers.
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Figure 1: Example of different subspace clusters

We generalize these observations as they are not only ap-
plicable to customer segmentation. In other applications,
objects might be sensor nodes represented by multiple sen-
sor measurements, or objects might be genes described by
their expression level under multiple conditions. For each
of these application scenarios, objects are described by very
many attributes. For such high dimensional data, all ob-
jects seem to be unique in full space as distances grow alike
due to the so called “curse of dimensionality” [8]. However,
a common observation is that each of the objects might be
part of different groups in different subsets of attributes. In
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general, we call this an object that is part of multiple con-
cepts detected by clusters in different subspace projections.
All of these groupings are valid characterizations of the same
objects by using different attributes. Thus, for the general
case of high dimensional data, a subspace cluster can be
detected by considering a subset of the dimensions.

Formally, a subspace cluster is a group of objects consid-
ering a set of relevant attributes. The main characterization
of a subspace cluster is given by its set of relevant dimensions
in which the objects are grouped together.

Definition 1. Subspace Cluster
Given a database DB which describes each object o ∈ DB
with dimensions DIM . A subspace cluster C = (O, S) is de-
fined by a set of objects O ⊆ DB and a subset of dimensions
S ⊆ DIM .

General research questions in subspace clustering consider
novel clustering models, their efficient computation and fair
and objective evaluation of the resulting output. All three
of these topics are discussed in the following.

2. RELATED WORK
Different clustering paradigms have been proposed in the

past decades for clustering and the young research area of
subspace clustering. Traditional clustering approaches, aim
at the detection of clustered objects using all attributes in
the full data space. However, independent of the under-
lying clustering model, full space clustering approaches do
not scale to high dimensional data spaces covering multi-
ple different concepts. As clusters do not appear across all
attributes, they are hidden by irrelevant attributes. Dimen-
sionality reduction like PCA aims at discarding irrelevant,
noisy dimensions [13]. However, in many practical applica-
tions no globally irrelevant dimensions exist.

Recent research for clustering in high dimensional data
has introduced a number of different approaches summa-
rized in [24, 16]. The underlying mining task was named by
the pioneers in this field subspace clustering [2] or projected
clustering [1]. Their common goal is to detect clusters in
arbitrary subspace projections of the data. Each cluster is
associated with a set of relevant dimensions in which this
pattern has been discovered. Differences of clustering ap-
proaches in subspace projections have been shown in our re-
cent evaluation study [23]. Projected clustering techniques
detect disjoint subsets of objects [1, 17, 25, 29]. Thus, pro-
jected clustering misses to detect multiple concepts per ob-
ject as one aims at a partitioning of the objects. In contrast,
subspace clustering allows objects to be part of multiple clus-
ters in arbitrary subspaces. However, due to the exponential
number of possible subspaces, it results in a huge number of
redundant clusters [2, 26, 14, 15].

In general, one might observe that most of the proposed
techniques in the literature have focused on extending tradi-
tional cluster definitions to subspace projections. Thus, the
state-of-the-art methods have missed to address some spe-
cific challenges in subspace clustering. Especially, the detec-
tion of few but relevant concepts in subspace projections has
not yet been addressed in subspace clustering. And thus, re-
dundancy as a major challenge has not been addressed for
almost a decade of research in subspace clustering. Let us
summarize the most important challenges in subspace clus-
tering in the following section before addressing our tech-
niques to tackle these challenges.

3. SUBSPACE CHALLENGES
Abstracting from the mentioned application scenarios there

are several open challenges in the area of subspace cluster-
ing. Let us summarize these challenges to derive an overview
of requirements for our novel subspace clustering techniques.
The following sections then focus on these efficient and ac-
curate techniques tackling each of these challenges.

Challenge 1. Adaptive cluster definition

The first challenge is derived out of the cluster definition
itself. While traditional clustering methods consider only
one space (full data space) they provide one global cluster
definition. Each set of objects which fulfills this definition
is a cluster. In contrast, subspace clustering searches for
clusters (O, S) in arbitrary subspaces S. Using one cluster
definition for all of these subspaces might miss some mean-
ingful clusters. A subspace cluster definition should adapt
to the considered subspace. Traditional subspace cluster-
ing approaches only restrict their (dis-)similarity measure
to dimensions in S (e.g. Euclidian Distance distS(o, p) =√∑

i∈S(oi − pi)2 is restricted to dimensions in S). How-

ever, such distances are incomparable over different sub-
spaces (e.g. for T ⊆ S : distT (o, p) ≤ distS(o, p)). In
general, traditional subspace clustering approaches are bi-
ased with respect to the dimensionality of the considered
subspaces [3]. As main property of each subspace, the di-
mensionality has major influence on the data distribution,
and thus, it should be utilized to develop an unbiased sub-
space cluster definition. As distances grow with increas-
ing dimensionality, objects are expected to be dense in low
dimensional subspaces while scattered in high dimensional
spaces. To detect meaningful clusters in any dimensionality,
cluster definition should adapt w.r.t. to this phenomenon.

Challenge 2. Detection of multiple concepts

A subspace clustering as the final set of subspace clus-
ters should allow the detection of multiple clusters for each
object. Detecting groups of objects in arbitrary subspaces
provides a set of attributes as reasons for each cluster. Each
subspace represents one of the multiple hidden concepts in a
high dimensional database. As observed in several applica-
tion scenarios, each object might be part of multiple clusters
in different subspaces. Assigning each object to at most one
cluster would restrict subspace clustering to only one con-
cept and result in missing clusters in other subspaces. A
subspace clustering should allow the detection of multiple
concepts. We consider overlapping of subspace clusters as
a major requirement. Furthermore, in subspace clustering
one should actively search for different concepts hidden in
the data. The general aim is to detect multiple subspace
clusters for all objects each of them representing a different
view on the data.

Challenge 3. Redundancy of subspace clusters

In contrast to the benefits of detecting multiple concepts,
one has to cope with enormous amount of possible clusters
in arbitrary subspaces. In an ideal case, all multiple con-
cepts provide additional knowledge for the overall result set.
However, this is not true for redundant subspace clusters.
Each hidden subspace cluster (O, S) results in a tremendous
amount of redundant subspace clusters (O, T ) ∀ T ⊂ S in
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all its lower dimensional projections providing no additional
knowledge. Removal of such redundancy is an important
challenge for subspace clustering to reduce the result to few
but relevant subspace clusters. There are several redun-
dancy issues to solve, ranging from simple projections of
subspace clusters inducing redundant results up to optimiza-
tion problems of overall result set.

Challenge 4. Computational complexity

While the previous challenges address the quality of sub-
space clustering results, one has also to consider an effi-
cient computation. In contrast to traditional clustering ap-
proaches which have to show scalability with respect to in-
creasing number of objects in the database, subspace clus-
tering techniques additionally have to scale with the num-
ber of given attributes per object. Using the density-based
paradigm one requires O(|DB|2) for clustering one fixed sub-

space, while there are 2|DIM| − 1 many possible subspaces
to investigate. Reducing both of these computational costs
by pruning cluster candidates is essential for a good runtime
performance, and thus, also for the applicability of subspace
clustering to large and high dimensional databases. We show
that costly database access like in traditional approaches
and the exponential search space of arbitrary subspaces pose
challenges for an efficient computation. Especially, for our
enhanced optimization models we have proven that mining
the most relevant subspace clusters is NP-hard [19]. This
poses novel challenges for the development of approxima-
tive efficient algorithms.

Challenge 5. Exploration and evaluation

As a natural property for clustering (unsupervised learn-
ing), no knowledge is given about the hidden structure of
the data. This poses a major challenge to evaluation of sub-
space clustering results. One possible but quite subjective
way of evaluation is visual exploration of results by domain
experts. However, for the young research area of subspace
clustering exploration tools are not available but strongly
desired. A second more objective way of evaluation is the
use of labeled data assuming that the given class labels rep-
resent the hidden cluster structure. While labeled data are
widely used for cluster evaluation, there exists no system-
atic evaluation of subspace clustering techniques. Especially,
due to missing standardized evaluation measures and a miss-
ing comparability of different implementations the compar-
ison of subspace clustering techniques is highly challenging.
Overall, the empirical results in most of the scientific publi-
cations on subspace clustering do not provide any objective
and systematic comparison. Different paradigms coexist in
the literature without any empirical evaluation of their clus-
tering qualities.

4. NOVEL CLUSTERING MODELS
We observe multiple open challenges to be tackled in this

young research area. In our research we focus on efficient
and accurate subspace clustering models based on the density-
based paradigm. In the following, an overview of this re-
search work tackling each of the mentioned challenges is
given. As an overview only the basic ideas are provided
in this work, for detailed discussions and evaluation results
please refer to the original publications.

4.1 Adaptive density-based subspace cluster-
ing

As first contribution, we provide a subspace cluster def-
inition which adapts to the considered subspace. Focusing
on the density-based paradigm proposed by DBSCAN for
the full space clustering [9], we develop an adaptive density
which is aware of the decreasing expected density in higher
dimensional spaces.

The traditional density-based clustering defines clusters as
dense regions seperated by sparse areas. Density is measured
by simply counting the objects in a fixed ε-neighborhood:
denS(o) = |{p ∈ DB | distS(o, p) ≤ ε}| Besides the re-
striction to the subspace S this is the original definition as
provided by DBSCAN [9]. However, for increasing dimen-
sionality |S| subspace clustering models have to cope with
increasing distances and the decreasing densities. In general,
our density models automatically adapt to the expected den-
sity in each subspace and represent density properties of the
hidden clusters better than fixed density definitions.

As basic enhancement we propose to adapt the density
threshold in the density-based cluster criterion. Intuitively,
clusters are defined as dense objects [9], that have to ex-
ceed a certain density threshold denS(o) ≥ MinPts. Tra-
ditionally, this threshold is fixed, but as density drops for
increasing dimensionality we define a monotonically decreas-
ing threshold function. Our threshold adapts to the ex-
pected density distribution caused by the dimensionality |S|
of the considered subspace.

Definition 2. Unbiased density
An object o ∈ DB is called denser than expected in the sub-
space S iff:

denS(o) ≥ expected density(S)

Our threshold function adapts the cluster definition such
that objects have to be denser than expected in the consid-
ered subspace. As we have shown in previous work [3], this
unbiased density enhances the quality of subspace clustering
results. Furthermore, we have extended this density defi-
nition given only for continuous valued attributes to cope
with heterogeneous subspaces [22]. We developed a uni-
fied density for both continuous and categorical attributes.
We provide a thorough comparison between frequent item-
set and subspace clustering as different mining paradigms.
We derive common properties for frequency on categorical
data and density on continuous data and unify these two
mining paradigms for our heterogeneous subspace clustering
model. This is essential for real world data where typically
attributes have various different types. As further enhance-
ments we develop an adaptive density measure.

adaptive density(o, S) = |{p ∈ DB | dist(o, p) ≤ ε(S)}|

While the previous approaches adapt the density thresh-
old and keep measuring the density in a fixed neighborhood,
our final approach defines a novel density measure. It in-
creases the neighborhood by a statistically motivated func-
tion ε(S) according to the dimensionality of the subspace
[19, 27]. With this enhanced density measure we ensure
meaningful density values even for subspaces where tradi-
tional fixed neighborhoods tend to become empty. Overall,
our research introduces novel techniques for density mea-
sures designed specifically for subspace clustering.
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4.2 All and only relevant subspace clusters
As second contribution we provide a novel clustering def-

inition for the final set of resulting subspace clusters. The
major enhancement is due to the exclusion of redundant
clusters. As we include only few but relevant subspace clus-
ter we improve the clustering quality and in addition gain
efficiency improvements for our algorithmic solutions. Ex-
isting projected and subspace clustering algorithms do not
address redundancy handling adequately. Projected cluster-
ing simply forces results to be non-redundant by assigning
each object to a single cluster at the cost of missing overlap-
ping clusters. Subspace clustering algorithms, in contrast,
either use no or a mere local approach to check the redun-
dancy.

C1

C2

C1a

C1b

C2

Figure 2: Local and global redundant clusters

As first approach in this area we develop a local redun-
dancy definition excluding lower dimensional projections of
subspace clusters (cf. Fig. 2). If for example a cluster (C2)
covers nearly the same objects than a higher dimensional
cluster (C1), then (C2) is redundant and not output as a re-
sult. Both clusters would have been valid results if one con-
siders only the cluster definition without redundancy han-
dling. However, excluding redundant clusters ensures small
and high quality clustering results. Our local redundancy
definition as proposed in [6], excludes lower dimensional pro-
jections that do not contribute enough novel information
controlled by a parameter R.

Definition 3. Non-Redundant Subspace Clustering
A subspace cluster (O, S) is non-redundant iff:

6 ∃(O′, S′) with O′ ⊆ O ∧ S′ ⊃ S ∧ |O′| ≥ R · |O|
This simple redundancy handling has shown improvements

of both clustering quality and runtime performance due to
in-process removal of redundant clusters [6]. However it is
limited to local redundancy. As shown in our example, in
both subfigures the cluster C2 is redundant because it is
induced by the other clusters C1, resp. C1a, C1b. A local
approach could identify the redundancy in the left figure.
Cluster C2 is redundant, as it covers C1 and only a few ad-
ditional objects. In the right figure, the fraction of points
shared by C1a and C2 as well as by C1b and C2 is small, and
the cluster C2 is misleadingly classified as non-redundant.
This mistake is the result of the local view on redundancy,
i.e. for each check only a pairwise comparison of clusters is
performed

In our second redundancy definition we overcome the draw-
backs of pairwise comparison and ensure redundancy-free
clustering by a global optimization. This enables the re-
dundancy model to exclude also redundant clusters as de-
picted in Fig. 2. A cluster is only included if it contributes

novel knowledge w.r.t. all other clusters in the clustering
result [19]. In contrast to our first approach, this optimiza-
tion yields only quality improvements while we have proven
that it is an NP-hard problem. This poses new challenges
for the development of efficient approximative solutions (cf.
Challenge 4). Based on this optimization we further en-
hance our clustering model by comparing each cluster only
with all other clusters in similar subspaces. Very dissimilar
subspaces (orthogonal subspaces) provide novel knowledge
as different concepts might be hidden in these subspaces
(cf. Challenge 2). Thus, our orthogonal subspace clustering
model [12], actively includes novel knowledge of orthogonal
concepts into the final clustering result. In ongoing work
[11, 10], we extend this to detection of alternative clusters
in subspaces projections. Overall, all of our non-redundant
subspace clustering techniques enable a high quality selec-
tion of relevant subspace cluster and thus significantly re-
duce the result sizes of subspace clustering.

5. EFFICIENT ALGORITHMS
As third contribution we develop several novel solutions

for efficient computation of our enhanced subspace cluster-
ing models. In general, these solutions tackle the high cost
for database access, prune the exponential search space of
arbitrary subspace projections and propose efficient solu-
tions for optimization of clustering result. Overall, these
solutions scale well with increasing number of dimensions,
which has shown to be the most challenging task for efficient
processing. Evaluated on benchmark data sets these solu-
tions show practical runtimes for the computation of high
quality clustering results.

Candidates Result
Hypercube

Filter
Density 

Filter Candidates Refine

Figure 3: Efficient filter and refinement architecture

As basic solution to tackle the high cost of database ac-
cess we propose a filter and refinement architecture for sub-
space clustering (cf. Fig. 3). This basic idea uses a grid
approximation as filter and a density-based clustering as a
refinement step [5]. As filter steps can be performed with-
out costly database access, our architecture ensures scalable
runtimes up to large and high dimensional databases. It is
used in all of our further developments to ensure efficient
access to arbitrary subspace regions. Using grid approxima-
tions our techniques can efficiently check whether a subspace
region contains a potential cluster or not. Thus pruning of
irrelevant regions can be performed without costly database
access.

Incorporating our redundancy removal into an efficient
processing we developed a pruning of redundant subspace re-
gions in a depth-first processing [6]. Using this technique one
can exclude large parts of the exponential search space as
they contain only redundant clusters. This pruning can be
realized to perform an in-process removal of redundant clus-
ters without creating tremendous amount of redundant sub-
space cluster candidates. For the more enhanced subspace
clustering models using an optimization of the clustering re-
sult we have to cope with an NP-hard problem, as mentioned
before. We develop a relaxation of the proposed model [19].
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This relaxation can be computed by a greedy processing
showing both efficient computation and high quality clus-
tering results. As our relevant subspace clustering excludes
most of the exponential search space, in our ongoing work
we develop a jump processing for subspace clustering. This
novel processing schema overcomes the efficiency problems
of both traditional breadth-first processing as well our own
depth-first processing methods. A key requirement for such
a jump is a high quality estimation of density in arbitrary
subspace regions. We develop an efficient but also high qual-
ity estimation [20]. Using only knowledge from two dimen-
sional histograms our method can estimate density in sub-
space regions without further database access. This extends
our basic filter and refinement architecture by a second filter
step with even less computation cost.

6. OBJECTIVE EVALUATION
As general contribution to the research community we

have performed a systematic evaluation of a broad set of sub-
space clustering techniques. Furthermore, our novel frame-
work for evaluation and exploration of clustering in subspace
projections provides the means for a comparable and espe-
cially a repeatable evaluation of the main paradigms.

6.1 Evaluation Study
In our evaluation study [23], we provide a thorough char-

acterization of the main properties of subspace clustering
paradigms and their instantiations in different approaches.
We provide an overview of three major paradigms (cell-
based, density-based and clustering oriented). We high-
lighted important properties for each of these paradigms and
compare them in extensive evaluations. In a systematic eval-
uation we used several quality measures and provide results
for a broad range of synthetic and real world data.

With this study, we provide the first comparison of differ-
ent paradigm properties in a thorough evaluation. We could
show that traditional methods for density-based subspace
clustering do not scale to very high dimensional data, while
the clustering oriented approaches are affected by noisy data
resulting in low clustering quality. A recent cell-based ap-
proach [29], outperforms in most cases the competitors in
both efficiency and clustering quality. Surprisingly, the basic
approach PROCLUS [1], in the clustering oriented paradigm,
performs very well in our comparison. In contrast, the
basic approaches CLIQUE and SUBCLU of the other two
paradigms showed major drawback induced by the tremen-
dously large result set. Recent approaches of these paradigms
enhanced the quality and efficiency, however, could reach
top results only in few cases. Summing up, we show that
computing only a small set of relevant clusters like some
projected clustering approaches and pruning most of the re-
dundant subspace clusters as proposed by our techniques
achieves best results.

In general, our evaluation constitutes an important basis
for subspace clustering research as one can compare a broad
set of competing techniques but also compare the used eval-
uation measure. Using this study one can derive several
novel challenges not tackled by other subspace clustering
approaches. Furthermore, we observe ongoing publications
in this area for which our study gives a baseline for future
evaluations. Our proposed baseline includes multiple as-
pects for a fair comparison not only in evaluation studies:
First, a common open source framework with baseline im-

plementations for a fair comparison of different algorithms.
Second, a broad set of evaluation measures for clustering
quality comparison. Third, a baseline of evaluation results
for both real world and synthetic data sets with given pa-
rameter settings for repeatability. All of this can be down-
loaded from our website1 for further research, comparison
or repeatability. In the following we describe the underlying
open source framework in more details. It is a major contri-
bution for the community as it enables repeatable evaluation
for future publications. Furthermore, this common frame-
work ensures applicability of our research in various domains
by providing evaluation and exploration of subspace cluster-
ing results.

6.2 Open Source Framework
With OpenSubspace we provide an open source frame-

work for the emerging research area of clustering in subspace
projections [18, 7]. The aim of our framework is to estab-
lish a basis for comparable and repeatable experiments and
thorough evaluations in the area of clustering on high di-
mensional data. OpenSubspace is designed as the basis for
comparative studies on the advantages and disadvantages
of different subspace/projected clustering algorithms. Pro-
viding OpenSubspace as open source, our framework can be
used by researchers and educators to understand, compare,
and extend subspace and projected clustering algorithms.
The integrated state-of-the-art performance measures and
visualization techniques are first steps for a thorough eval-
uation of algorithms in this field of data mining.

As major benefit OpenSubspace ensures repeatability of
results in scientific publications. Based on a common frame-
work all implementations are available and can be used by
any researcher to compare against previous techniques. As
integrated in the well established WEKA framework [28],
our OpenSubspace tool is already used by several interna-
tional scientists for their research work. Especially for our
research it is widely used in evaluations. All experiments
in our subspace clustering publications are based on this
framework such that we can ensure repeatability of our re-
sults. Furthermore, we use this framework in lab courses to
provide students an easy way of rapid prototyping as well
as in lectures to illustrate the effects of subspace clustering
algorithms on toy databases.

Overall, the OpenSubspace framework can be seen as the
natural basis for our future research in this area. We are
currently developing evaluation measures that meet the re-
quirements for a global quality rating of subspace clustering
results. Evaluations with the given measurements show that
none of the measurements can provide an overall rating of
quality. Some measurements give contradicting quality rat-
ings on some data sets. Such effects show us that further
research should be done in this area.

Visualization techniques give an overall impression on the
groupings detected by the algorithms [4, 21]. Further re-
search of meaningful and intuitive visualization is clearly
necessary for subspace clustering. The open source frame-
work might encourage also researches in Visual Analytics
to develop more meaningful visualization and exploration
techniques.

For an overall evaluation framework OpenSubspace pro-
vides algorithm and evaluation implementations. However,
further work has to be done to collect a bigger test set of

1http://dme.rwth-aachen.de/OpenSubspace/
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high dimensional data sets. On such a benchmarking set
one could collect best parameter settings and best quality
results for various algorithms as example clusters on these
data sets. The aim of an overall evaluation framework with
benchmarking data will then lead to a more mature sub-
space clustering research field in which one can easily judge
the quality of novel algorithms by comparing it with ap-
proved results of competing approaches.

7. CONCLUSION
This work provides an overview of my dissertation in the

research area of clustering in subspace projections. It is part
of an emerging research community, as large and high dimen-
sional databases where clusters are hidden in subsets of the
given attributes are widely used in today’s application sce-
narios. My thesis provides novel subspace clustering models
which have shown to achieve enhanced clustering accuracy
on benchmark databases. Furthermore, they all provide few
but relevant subspace clusters such that users are able to
review the output result sets. With our research on efficient
processing schemes we have developed scalable algorithms
applicable on large and high dimensional databases. For the
overall research community our objective evaluation study
on subspace clustering techniques provides the basis for fu-
ture research. Please feel encouraged to use and extend our
OpenSubspace framework for your own research.
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T. Seidl. Relevant subspace clustering: Mining the
most interesting non-redundant concepts in high
dimensional data. In ICDM, pages 377–386, 2009.

[20] E. Müller, I. Assent, R. Krieger, S. Günnemann, and
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