
Towards A Unified Framework For Schema Merging

Xiang Li
supervised by Matthias Jarke
Informatik 5 (Information Systems)

RWTH Aachen University
52056 Aachen, Germany

lixiang@dbis.rwth-aachen.de

ABSTRACT
Merging schemas to create a mediated view is a recurring problem
in applications related to data interoperability. The task becomes
particularly challenging when the schemas are highly heteroge-
neous and autonomous. Classical data integration systems rely on
a mediated schema created by human experts through an intensive
design process. Automatic generation of mediated schemas is still
a goal to be achieved.

We present a novel logical framework for merging multiple re-
lational schemas related via a collection of mapping constraints in
the form of tuple-generating dependencies (tgds), to address the
challenge of creating a mediated query interface for data integra-
tion systems. The semantics of schema merging is characterized as
query answering properties of the output mapping system between
the union of the source schemas and the mediated schema. We
then focus on a class of mediated schemas that result from trans-
formations of the source schemas and present preliminary results
and future work for searching minimal mediated query interfaces.

Our work is a first step towards a unified framework of logical
schema merging.

1. INTRODUCTION
Schema merging is the process to consolidate multiple related

heterogeneous schemas to provide a unified user view called the
mediated schema. In order to support data loading from the sources
to the mediated schema (e.g., in data warehousing), or to enable
querying of sources through the mediated schema (e.g., in data in-
tegration [23] or dataspaces [34]), mappings revealing the relation-
ship between the mediated schema and the source schemas have
to be established in the merging process. Classical data integra-
tion systems [23] nowadays still rely on a mediated schema created
by an intensive manual design process by human experts, which is
costly and inflexible in a dynamic evolving environment such as
dataspaces.

In vision of the importance of schema merging, Merge is pro-
posed as one of the major operators in Model Management [6]. As
retrospected by Bernstein and Melnik in [8], the original vision of
Model Management 1.0 is not semantic but structural, i.e., not relat-

.

ing schema and data. We believe a semantic formalism for schema
merging is in need, so that the capabilities and liabilities of a merg-
ing process can be assured. Furthermore, a formal foundation is
a prerequisite for understanding the expressiveness and tractability
of merging, which is inevitable for realizing a model management
engine to address real-world data programmability problems. Last
but not least, a formalism is also vital for clarification of the se-
mantics of the merging process for different data intensive applica-
tions. For example, semantics differ quite a lot in data integration
and view integration, since the former aims at creating a mediated
query interface while the latter opts for a storage schema.

In this thesis, we present a novel logical framework for merging
multiple relational schemas related via a collection of mapping con-
straints in the form of tuple-generating dependencies (tgds), to ad-
dress the challenge of creating a mediated query interface for data
integration systems. The semantics of schema merging is charac-
terized as query answering properties of the output mapping sys-
tem between the union of the source schemas and the mediated
schema. We then focus on a class of mediated schemas that result
from transformations of the source schemas and present prelimi-
nary results and future work for searching minimal mediated query
interfaces.

The remaining parts of the paper are structured as follows. Our
approach is presented in Section 3, after describing preliminaries
in Section 2. We present our research agenda in Section 4. State
of the art of schema merging is discussed in Section 5. Finally,
concluding remarks are given in Section 6

2. PRELIMINARIES
We now describe the language of our mapping formalism and

then explain its semantics in the concrete application scenario of
virtual data integration systems.

A tuple generating dependency (tgd) [1], is a query containment
constraint in the form of:∀~x[∃~yφ(~x,~y)→ ∃~zψ(~x,~z)], where φ and
ψ are conjunctions of atoms and ~x, ~y and ~z are mutually disjoint
variables. It is full, if there are no existential variables on the right
hand side, otherwise it is an embedded tgd. When the two sides of
tgds are defined over two distinct schemas, it is a natural language
for binary schema mappings. For a source schema S and a target
schema T , a source-to-target tgd (s-t tgd) is a tgd such that the
antecedent contains only atoms from S and the consequent contains
only atoms from T .

The chase procedure [14] is an indispensable tool for reasoning
with data dependencies. With Σ being a set of tgds and egds with
terminating chase, we use chaseΣ(I) to denote the result of chase
using Σ over database I. When Σ is a set of s-t tgds and target de-
pendencies, we also use chase(I,Σ) to denote the target instance J
such that (I,J) = chaseΣ(I, /0). We say the input of schema merging

102

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore



is with terminating chase if the union of the data dependencies in
the input mapping and in the source schemas always have a termi-
nating chase.

A schema S is a set of relation schemas including key and for-
eign key constraints. The constraints are formulated as a set of de-
pendencies ΣS (tgds and equality-generating dependencies (egds)
[1]). A mapping between two schemas S1 and S2 is a triple
M = (S1,S2,Σ) where Σ is a set of dependencies, i.e., egds and
tgds. The semantics of a binary mapping is a binary relation
with instances of the source schema as the domain and instances
of the target schema as the range, i.e., Inst(M ) = {(I,J) : I ∈
Inst(S1)∧ J ∈ Inst(S2)∧ (I,J) |= Σ}. The semantics of the com-
position of two mappings M13 = M12 ◦M23 is then defined as
Inst(M13) = {(I,K) : ∃J (I,J)∈ Inst(M12)∧(J,K)∈ Inst(M23)}.
For a mapping M from S to T , the possible worlds, called solu-
tions, of T wrt. an instance I of S are SolM (I) = {J ∈ Inst(T ) :
(I,J) ∈ Inst(M )}. We denote it by Sol(I) when the mapping in-
volved is clear from context.

An incomplete database I with schema S and dependencies Σ is
a representation of a set of possible worlds. Given an instance I
of schema S, the semantics of I wrt. a set of data dependencies Σ

over S is SemΣ(I) = {I′ : I′ ∈ Inst(S)∧ I ⊆ I′ ∧ I′ |= Σ}. When the
dependencies are clear from context, we simply write Sem(I) for
brevity.

The certain answer of a query q wrt. a set of database instances
P over the same schema is: certain(q,P) =

⋂
I∈P q(I). Equivalence

of two sets of databases is then defined using certain answers. Two
sets of database instances P1 and P2 under the same schema are
said to be L-equivalent wrt. a query language class L, denoted by
P1 ≡L P2, if for any query in L they have the same certain answer.
We are interested in equivalence wrt. conjunctive queries, i.e., CQ-
equivalence.

Given a collection of schemas S1, S2, ..., Sn without repeating
relation names, the joint source schema is then S =

⋃
i Si. Let Ii

be the extension of Si, the joint source instance is then a concate-
nation I = (I1, I2, . . . , In). Given a collection of schemas S1, S2,
..., Sn, local constraints ΣC and mapping constraints Σi among the
sources, the semantics of a joint source instance I is SemΣC∪Σi(I).
Therefore, a merge input is a pair (S,Σ), where S is the joint
source schema and Σ is the union of source ICs ΣC and the in-
put mapping constraints Σi. The schema merging is stated as:
Mo = (S,G,Σo) = Merge(S,Σ), where G is the mediated schema,
Σo is a set of data dependencies, and Mo is the output mapping
between S and G.

3. A LOGICAL FRAMEWORK
In this section, we describe our framework for schema merging.

Semantic characterization of schema merging is discussed in Sec-
tion 3.1. We introduce in Section 3.2 a main component of our
algorithm, i.e., deciding whether the desired properties are retained
after schema transformation. The schema minimization procedure
using the property retainment test is then presented in Section 3.3.
Finally, an illustrative example is provided in Section 3.4.

3.1 Characterizing Mediated Query Inter-
faces

The first issue of merging schemas is what we would like to use
the merged schema for. We set up our problem in the scenario of
creating a mediated query interface for users so that they can query
all the data in the sources in a seamless way.

3.1.1 Retaining Certain Answers

It is natural to require an automatically merged schema to re-
tain all the information in the sources, called completeness in [5].
Most of the approaches that do not emphasize generating output
mappings fulfill completeness by retaining all attributes of source
schemas [5, 35, 29, 22, 30, 32]. Few [10, 31] achieve this goal by
ensuring that all source data are retained via the output mapping
supporting the mediated schema.

For incomplete data sources with mapping constraints, retaining
only extensional data is not enough, since more query answers may
result from the constraints. Therefore, we deem it necessary that
the output mapping system retain all certain answers.

Definition 1. Given a mapping language L, source schemas S
with data dependencies Σ, and a mediated schema G with output
mapping Mo = (S,G,Σo), a witness mapping is a mapping Mw =
(G,S,Σw) with Σw specified in L such that for any source instance
I ∈ Inst(S), we have: SemΣ(I)≡CQ SolMo◦Mw(I).

Completeness of a mediated schema is defined using the witness
mapping.

Definition 2. An output mapping M = (S,G,Σo) is complete
wrt. a mapping language L if there exists a witness mapping Mw =
(G,S,Σw) with Σw specified in L.

In contrast, completeness in [31] is requiring extensions of
source relations are retained, while we require all certain answers
of CQs are retained.

3.1.2 Mix Equivalent Data
Input mapping in the form of query containment constraints are

guiding clues how the schema and the underlying data should be
merged. [26] capture the intuition by enforcing the composition of
M13 and the inverse of M23 is equivalent to the input mapping con-
straints, when merging M1 and M2 to M3 and generating supporting
mappings M13 and M23 from each source schema to the mediated
schema. Unfortunately, it is known that the inverse of mappings in
even s-t tgds usually does not exist [18, 21].

We formulate the requirement of reflecting knowledge encoded
in the input mapping constraints in term of logical properties of the
output mapping system.

Definition 3. An output mapping system M is integrated, if for
any joint source instance I, SolM (I) and SolM (Sem(I)) are CQ
equivalent.

The integratedness property requires that an incomplete source
behaves the same as its semantics regarding query answering. For
arbitrary schema mappings, the property is undecidable. As de-
scribed later, integratedness is ensured in our algorithm in a model
theoretic manner.

3.1.3 Smaller Is Better
A main goal of schema merging is to create a unified query in-

terface for multiple data sources and hence reduce metadata chaos
[13]. We take the assumption that a mediated schema with less
redundancy is better, i.e., smaller is better. In order to avoid com-
paring heterogeneous schemas supported by various output schema
mappings, we focus on minimality wrt. a given output mapping.

Minimality states that the output mapping system cannot be
transformed via a family of mappings to achieve another output
mapping with a smaller mediated schema without losing a given
property. In schema merging, we are interested in properties such
as completeness and integratedness raised earlier.

103



Definition 4. Let P be a class of output mapping systems deter-
mined by some property, an output mapping system M = (S,G,Σ)
is minimal wrt. a family of transformation mappings T if there
does not exist a mapping Mt ∈T such that the composition of M
and Mt is in P .

The family of mappings T determine the search space for can-
didate output mappings. For creating smaller query interface, we
are interested in transformations that strictly reduce the size of the
signature of the mediated schema.

3.2 Property Retainment via Transformations
It is easy to show that completeness and integratedness are unde-

cidable for arbitrary schema mappings via reduction from datalog
boundedness and datalog containment, respectively. Therefore, it
does not make sense to insist on creating arbitrary output mappings
for schema merging. We follow an approach in which an initial out-
put mapping satisfying the desired properties is created, and then
successive testing whether the properties are retained after transfor-
mation is performed.

3.2.1 Canonical Mediated Schema
It is always possible to construct a particular output schema map-

ping that is both complete and integrated, which we call the canon-
ical output mapping. For a given merge input (S,Σ), we create the
canonical output mapping as follows:

1. Create target schema G as a replica of S, and denote by Σcopy
the copy s-t tgds from S to G.

2. Let ρ be the renaming of predicates from S to the copied
ones in G, construct the target dependencies over G as ΣG =
ρ(Σi∪ΣS).

3. The canonical output mapping is Mo = (S,G,Σcopy∪ΣG).

PROPOSITION 1. The canonical output mapping is complete
wrt. full s-t tgds and integrated.

Taking the canonical output schema as a starting point is quite nat-
ural, since it incorporates all the information in the joint source
schema. We have to point out that almost all the existing ap-
proaches to schema merging start from the original source schemas
and then carry out transformations.

Interestingly, Melnik describes in [25] a straightforward algo-
rithm creating a mediated schema for view integration, which dif-
fers from our canonical mediated schema only in the direction of
the output mapping. However, signature size does not matter for
view integration and hence they do not head for minimization of
the mediated schemas.

3.2.2 Retainment of Properties
Given a schema mapping M with a property P, the problem of

property retainment for a given transformation mapping Mt is to
decide whether M ◦Mt still has the property P.

The following proposition states that when the transformation
mappings are specified by a set of s-t tgds, target egds, and target
tgds with terminating chase, retainment of integratedness is always
satisfied.

PROPOSITION 2. Let M be an integrated schema mapping that
admits universal solutions and Mt be a transformation mapping
specified in a finite set of s-t tgds and a set of target tgds and egds
with terminating chase, then M ◦Mt is also integrated.

As preliminary work, we studied in [24] the retainment testing
for completeness, when the transformation mappings are confined
to projections. We show that completeness retainment is equivalent
to preserving answers to a finite set of queries after projection. This
is due to the fact that any ground solution of the canonical output
mapping is essential, i.e., the core of some source instance.

For a given projection mapping Mp and a given query class L,
a query q is recoverable wrt. a set of dependencies Σ, if there ex-
ists another query q′ ∈ L so that for each legal database I wrt. Σ,
q′(Mp(I)) = q(I). Given a projection Mp of the canonical medi-
ated schema G with dependencies ΣG and a witness mapping Mw,
the completeness retainment test returns true if for each source rela-
tion R ∈ S, unfolding of its identity query q(~x)← R(~x) against Mw
is recoverable wrt. ΣG and UCQs. It is shown in [24] that com-
pleteness is retained after projection if and only if the test returns
true.

The above implies the following result

THEOREM 1. Retainment of completeness is decidable wrt.
projections for the canonical output mapping.

It remains open how retainment of completeness can be extended
to allow more expressive transformation mappings. For instance,
collapsing is another popular transformation employed in existing
approaches to schema merging.

3.3 Minimization
With the property retainment test at hand, we can describe the al-

gorithmic framework of our approach. First, we create the canon-
ical output mapping and add it to a processing queue. For each
candidate on the processing queue, we enumerate all mediated
schemas reachable by transformations and put those that retain the
desired properties to the processing queue. If no transformation
can be applied to a candidate, then report it as a minimal mediated
schema. The termination of the above algorithm relies heavily on
the nature of the family of transformation mappings. In the scenario
of creating mediated query interfaces, we head for a minimal signa-
ture. Therefore, we use the transformations that strictly reduce the
size of the mediated schema. The monotony of the transformations
ensures termination of the minimization process.

In [24], we have dealt with the minimization wrt. projection.
This is effectively achieved due to the fact that composition of con-
secutive projections is equivalent to a single projection. Therefore,
we are able to find minimal output mapping for a given starting
point by exploiting the projection dropping the largest number of
attributes.

However, it remains open how to minimize a mediated schema
when collapsing is admitted. The challenges lie in several aspects.
First, the test for completeness retainment has to be extended to
allow for collapsing. Second, intermediate output mappings result-
ing from composition of transformations are no longer expressible
as standard schema mappings, since composition of embedded s-t
tgds is involved. A possible solution for the second challenge is to
use s-t second order dependencies (s-t SO dependencies) [4] as the
mapping language, which admits a chase procedure. Therefore, the
second challenge reduces to extend the completeness retainment
test to s-t SO dependencies.

Moreover, it is of interest how to efficiently enumerate or how to
prune the candidate space, so as to avoid unnecessary logical rea-
soning. In [24], we propose an A-priori variant to avoid duplicate
testing of projections. A challenge to be addressed is how to effi-
ciently prune the search space, when both projection and collapsing
are in play.

3.4 An Illustrative Example

104



We describe in Fig. 1 a simple merging scenario adapted from
[31]. The corresponding foreign key constraints for these relation-

!"#$%&'(!
!"#$!
!%$&!
!$&'(!

!"#)*%+,!
!"#$!!
!)'*&!!
!+,-.&!

-.#$%&'(!
!"#$!
!)'*&!
!%$&!
!+,-.&!!
!"/"0*/+!

!
/012 /312

Figure 1: An Illustrative Example

ships are indicated by ⊆-lines, while keys are underlined. In ad-
dition, we show the value correspondences of the attributes of the
schemas in dashed lines. The mapping constraint can be stated as

Go-flight(N,T,M),Go-price(N,D,P)↔ Ok-flight(N,D,T,P,N)

We write “↔” as a shorthand indicating equivalence of two queries,
i.e., two query containment constraints.

As the starting point the canonical mediated schema is created,
resulting in a replica of the source relations (Go-flightc, Go-pricec
and Ok-flightc), while all data dependencies are taken as target con-
straints on the mediated schema. We then perform schema mini-
mization wrt. projections. First, we find all size-one projections
that can be performed without losing query answers. These include
all attributes of Go-pricec and date, time and price of Ok-flightc.
Larger possible projections are generated bottom-up in an a-priori
style to avoid unnecessary reasoning. A candidate projection is
feasible if it retains completeness (see below). The above exam-
ple has four minimal mediated schemas, each corresponding to a
maximal projection. One mediated schema with minimal signa-
ture size includes two relations Go− f lightm(num, time,meal) and
Ok− f lightm(num,date, price,nonstop), with Go− pricec and the
time attribute of Ok− f lightc projected. The output mapping is
then the composition of the canonical output mapping and the pro-
jection, which we omit here for brevity.

We now show how to test retainment of completeness against
projections, considering the projection removing the whole rela-
tion Go-pricec. The retainment test succeeds if each relations’s
identity query is recoverable after projection. We showcase testing
whether the identity query of Go-pricec is still recoverable. We first
chase the query against the dependencies Σ, resulting in a query
q = πnum,date,price(Go− f lightc 1 Go− pricec 1 Ok− f lightc).
Then we freeze the body of q as a database. We perform the
given projection on the frozen database and then expand the frozen
database wrt. the projection, i.e., introducing a fresh variable for
each appearance of the projected attributes. The expanded instance
is then chased again against Σ. Finally, we test whether the frozen
head of q is contained in the answer of evaluating q over the result
instance obtained earlier. The query under test is recoverable as the
above test succeeds.

4. RESEARCH AGENDA
The research agenda addresses four areas: 1) extending the ap-

proach to include collapsing; 2) extending the framework to take
inconsistent databases into consideration; 3) building a prototype;
and 4) evaluation.

In the near future, we will incorporate collapsing of relations into
our framework, which together with projection provides a fairly
large candidate space covering almost all the possibilities studied
in existing approaches.

• The output mapping language need to be extended to s-t SO
dependencies [4], which is shown to be the right language
for composition of standard schema mappings.

• A completeness retainment test for collapsing has to be es-
tablished.

• An efficient algorithm enumerating candidates is to be cre-
ated.

We are building a schema merging prototype, which is able to
merge n-ary schema interrelated by weakly acyclic tgds.

• Since we are using n-ary mappings among schemas, we
are developing viewers for illustrating n-ary mappings intu-
itively.

• Query answering over the mediated schema is also under de-
velopment in the prototype. Query answering using a materi-
alized approach as in data exchange [19] always suffices for
egds and tgds with terminating chase.

• Query rewriting over the mediated schema is more intricate.
When the input mapping is weakly acyclic, we can extend
the inverse rule algorithm to obtain rewritings. Without the
presence of egds, we can rewrite a CQ over the mediated
schema into a datalog program without functions, using an
extension of the predicate-split technique described in [17].
In presence of egds and full tgds, the technique using datalog
rules for simulating chasing of egds [17] is still applicable.
For the most general case, when embedded tgds and egds are
involved, to the best of our knowledge, there is no rewriting
technique known. When the input mapping is not weakly
acyclic (but with terminating chase, e.g., stratified), negation
might be necessary.

In all the previous sections, we assume that the data sources are
consistent, i.e., there exists a finite model for the given merge input.
However, real world data is dirty. In absence of egds (e.g., keys),
termination of chase guarantees the existence of a finite model for
the joint source. It becomes more intricate when egds are present
in the sources. When egds are violated, there are basically two
strategies. The first one is to take source constraints as local and
hence do not make use of them in merging. After deciding which
source constraints are to be excluded, the input can be simply fed to
the merging algorithm. The second strategy is to follow consistent
query answering [9].

The evaluation plan includes the data set selection and metrics to
be measured.

• Data set: the Illinois Semantic Integration Archive (http:
//pages.cs.wisc.edu/~anhai/wisc-si-archive/

summary.type.html) contains a collection of real world
schemas with matches, which can be used for testing
effectiveness and expressiveness of our merging algorithm
over real world data. As a complement, STBenchmark [2]
configurable mapping scenario generation tool which can be
used for generating sample inputs for our framework.

• We will investigate the expressiveness of input mappings of
our merging algorithm relative to real world data sets. Query
answering and/or rewriting feasibility is to be tested to prove

105

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/summary.type.html
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/summary.type.html
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/summary.type.html


the usefulness in data integration. Reduction ratio measures
how much duplication is reduced on the schema level, and is
taken as an indication of a quality metric. For those inputs
with a referential mediated schema, comparison is to be car-
ried out to reveal the effectiveness over real world data. We
are also going to perform experiments on the scalability of
our algorithm over variously sized input.

5. RELATED WORK
Classical view/database integration approaches make up a rich

line of work [5, 11, 35, 29, 22]. As the integration tasks are usu-
ally carried out in a schema design scenario, schemas schemas are
usually represented in a variant of ER model or Object-Oriented
model. The approaches differ quite a lot on how inter-schema rela-
tionships between source schemas are represented. So called inter-
schema assertions [35, 32] are a popular language specify set-based
relationships (e.g., inclusion, disjoint, and equal) between possible
extensions of concepts in different schemas. The approaches usu-
ally undergo two steps: first collapse equivalent elements in the
source schemas and then resolve the conflicts arising in collapsing.
Spaccapietra et al. [35] propose a well known representative algo-
rithm, which is able to handle a wide class of structural conflicts.
Model management 1.0 [6] has seen several approaches operating
on general structures [30, 32], independent of the modeling lan-
guages. A common shortcoming of this line of work is that no
output mapping in the form of logical view definitions are gener-
ated, although attribute correspondences between source schemas
and target schemas are an implicit result.

Schema merging using expressive logical mappings are consid-
ered to be largely unexplored [15, 7]. [10] and [12] are pioneers
using logical constraints in merging. Similar to us, they con-
sider source integrity constraints and head for a minimal mediated
schema. However, their input mapping language is a special class
of mappings in the form of one-to-one relation-wise implications
and keys are required to be present in each implication. Our ap-
proach can be deemed as an extension of their work in the sense that
we consider tuple generating dependencies which is much more
expressive. Another distinction is that we consider source incom-
pleteness, while they do not.

In [31], Pottigner and Bernstein extend their early work [30] to a
merging algorithm working with relational schemas and generating
output mappings. Similar to us, they also head for a minimal signa-
ture for mediated schemas in data integration. Our approach differs
from theirs in several ways. First, their input mapping language
is a special class of GLAV mappings using conjunctive queries to
specify overlap between schemas. In contrast, we consider arbi-
trary query containment constraints in the form of tuple generating
dependencies with the only restriction that they admit a terminat-
ing chase. Second, their merging semantics is based on preserving
source information and overlap. Since we do not have the concept
of overlap, there is no overlap preservation in our requirements for
schema merging. They assume that the extensions of the sources do
not conform to any direct constraints and hence their completeness
requirement is based on preserving all extensionally stored data.
In contrast, we consider source incompleteness as a basic assump-
tion and take the input mapping as expected constraints over the
integrated global database. Therefore, our completeness requires
preserving not only extensional data but also inferred data in the
form of certain answers. Third, the queries used in their approach
to witness the complete preserving of source information do not
contain joins, i.e., over a single relation, while our approach uses
conjunctive queries over the mediated schema to reconstruct source
information, which probably leads to smaller mediated schemas.

Last but not least, source integrity constraints made use of in our
approach are not exploited in theirs.

As clarified in [27], view integration is a closely related but se-
mantically different problem from data integration. View integra-
tion aims at creating a backend storage schema supporting source
the schemas as views, which results in quite different requirements
on the merging algorithm. Melnik [25] proposes a straightforward
algorithm for view integration of logical schemas. The mediated
schema is taken to be a disjoint union of the source schemas, with
source dependencies and input mapping encoded as constraints.
Output mappings are identity mappings copying part of the me-
diated schema to a corresponding source schema. Arenas et al.
[3] extend the work to achieve a smaller instance for the mediated
schema by adding denial constraints. The two works differ funda-
mentally from our work in that they head for creating a backend
storage schema to support the views satisfying the input mapping.
That’s why their output mapping is from the mediated schema to
the source schemas while we create a mapping from the sources
to the mediated schema. They are more concerned with creating a
smaller mediated instance of the mediated schema while the signa-
ture’s size is insignificant. To the contrary, we aim at generating a
minimal query interface instead of a minimal instance.

It is widely observed that multiple plausible mediated schemas
may co-exist for a given input [13, 34, 33]. Chiticariu et al. [13]
propose an interactive schema merging approach using schema
matches as input. Concepts are extracted from logical schemas
and each possible configuration of concept collapsing results in
a plausible mediated schema. The space of plausible collapsing
of concepts is then navigated by the user in an interactive man-
ner. Since each extracted concept has a particular join path in the
source schemas, two concepts and value correspondences between
them comprise an implicit GLAV mapping. Following this point of
view, a schema match is a representation of a collection of uncer-
tain mapping constraints. The work is extended in [33] to generate
only most desired top-k mediated schemas, which reduces the cost
in the interactive exploration of the candidates. A mediated schema
is considered more desired if it collapses concepts with higher sim-
ilarity or sub-element coverage. Sarma et al. [34] is another un-
certain schema merging approach taking schema matches as input.
They represent alternative mediated schemas as a probability distri-
bution over different clustering of attributes. A probabilistic map-
ping [16] is produced for each possible mediated schema. In our
approach, the input mapping language is in logical constraints and
bears no uncertainty. However, we still capture the uncertainty that
the same piece of information can be structured in different ways
by admitting multiple minimal mediated schemas.

Our approach is heavily influenced by the work in data exchange,
e.g., set based semantics for mapping composition, focused on
weakly acyclic tgds, and considering certain answers and solutions
of schema mappings. However, the witness mapping raised in our
approach is not the same as an inverse mapping considered for in-
verting schema mapping. In fact, inverse mappings do not exist
for all weakly acyclic tgds. The witness mapping used in our work
to verify the property of the mediated schema may better be an-
alyzed using the theory of schema mapping equivalence [20]: the
composition of the output mapping and the witness mapping is CQ-
equivalent to the mapping (S,T,Σ) where T is a replica of S, and Σ

is all the data dependencies.
Another related area is view determinacy [28], which decides

whether a given set of views is able to answer a query. However,
we study for a given set of source schemas with integrity constraints
and inter-schema mappings, whether a mediated schema is able to
retain all certain answers of all possible queries for the possible

106



worlds of the source.

6. CONCLUSION
In this proposal, we have made a first step towards a unified log-

ical framework for schema merging. We have presented a gen-
eral logical framework for schema merging taking tuple generating
dependencies and source integrity constraints as input. We have
provided a characterization of the semantics of schema merging as
properties of the output mapping system under Open World As-
sumption in a concrete scenario, namely creating a mediated query
interface for data integration systems. We present an approach
which takes an initial complete and integrated output mapping as
a starting point, and then minimize the mediated schema while re-
taining desired properties of the output mapping system. Our pre-
liminary result when transformations are projections is described.
A research agenda for the dissertation is also presented.
Acknowledgements: The work is supported by the Research Clus-
ter on Ultra High-Speed Mobile Information and Communcation
UMIC (www.umic.rwth-aachen.de). The author thanks the
anonymous reviewers, Christoph Quix and Sandra Geisler for pro-
viding helpful comments on improving the paper.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark:

towards a benchmark for mapping systems. PVLDB,
1(1):230–244, 2008.

[3] M. Arenas and et al. Foundations of schema mapping
management. In PODS, 2010.

[4] M. Arenas, R. Fagin, and A. Nash. Composition with target
constraints. In ICDT, 2010.

[5] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323–364, 1986.

[6] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision for
management of complex models. SIGMOD Record,
29(4):55–63, 2000.

[7] P. A. Bernstein and H. Ho. Model management and schema
mappings: Theory and practice. In Proc. VLDB, pages
1439–1440, 2007.

[8] P. A. Bernstein and S. Melnik. Model management 2.0:
Manipulating richer mappings. In SIGMOD, pages 1–12,
2007.

[9] L. E. Bertossi. Consistent query answering in databases.
SIGMOD Record, 35(2):68–76, 2006.

[10] J. Biskup and B. Convent. A formal view integration method.
In SIGMOD, pages 398–407, 1986.

[11] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects
of schema merging. In Proc. EDBT, volume 580 of LNCS,
pages 152–167. Springer, 1992.

[12] M. A. Casanova and V. M. P. Vidal. Towards a sound view
integration methodology. In PODS, pages 36–47, Atlanta,
GA, 1983. ACM.

[13] L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive
generation of integrated schemas. In Proc. SIGMOD, pages
833–846, 2008.

[14] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In
PODS, pages 149–158, 2008.

[15] A. Doan and A. Y. Halevy. Semantic integration research in
the database community: A brief survey. AI Magazine,

26(1):83–94, 2005.
[16] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with

uncertainty. VLDB J., 18(2):469–500, 2009.
[17] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive

query plans for data integration. Journal of Logic
Programming, 43(1):49–73, 2000.

[18] R. Fagin. Inverting schema mappings. ACM Transactions on
Database Systems, 32(4), 2007.

[19] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. Theoretical
Computer Science, 336:89–124, 2005.

[20] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a
theory of schema-mapping optimization. In PODS, pages
33–42, 2008.

[21] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Quasi-inverses of schema mappings. ACM Trans. Database
Syst., 33(2), 2008.

[22] J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of
attribute equivalence in databases with application to schema
integration. IEEE Trans. Softw. Eng., 15(4):449–463, 1989.

[23] M. Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

[24] X. Li, C. Quix, D. Kensche, and S. Geisler. Merging schemas
using mapping constraints over incomplete sources.
Submitted for publication.

[25] S. Melnik. Generic Model Management: Concepts and
Algorithms, volume 2967 of LNCS. Springer, 2004.

[26] S. Melnik, P. A. Bernstein, A. Y. Halevy, and E. Rahm.
Supporting executable mappings in model management. In
Proc. SIGMOD Conf., pages 167–178. ACM Press, 2005.

[27] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and translation.
In Proc. VLDB, pages 120–133. Morgan Kaufmann, 1993.

[28] A. Nash, L. Segoufin, and V. Vianu. Determinacy and
rewriting of conjunctive queries using views: A progress
report. In Proc. ICDT, volume 4353 of LNCS, pages 59–73,
2007.

[29] C. Parent and S. Spaccapietra. Issues and approaches of
database integration. Communications of the ACM,
41(5):166–178, 1998.

[30] R. Pottinger and P. A. Bernstein. Merging models based on
given correspondences. In VLDB, pages 826–873, 2003.

[31] R. Pottinger and P. A. Bernstein. Schema merging and
mapping creation for relational sources. In Proc. EDBT,
2008.

[32] C. Quix, D. Kensche, and X. Li. Generic schema merging. In
Proc. CAiSE’07, volume 4495 of LNCS, pages 127–141,
2007.

[33] A. Radwan, L. Popa, I. R. Stanoi, and A. A. Younis. Top-k
generation of integrated schemas based on directed and
weighted correspondences. In U. Çetintemel, S. B. Zdonik,
D. Kossmann, and N. Tatbul, editors, SIGMOD Conference,
pages 641–654. ACM, 2009.

[34] A. D. Sarma, X. Dong, and A. Y. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD, pages
861–874, 2008.

[35] S. Spaccapietra, C. Parent, and Y. Dupont. Model
independent assertions for integration of heterogeneous
schemas. VLDB Journal, 1(1):81–126, 1992.

107

www.umic.rwth-aachen.de



