
SearchAsYouType in Forms:
Leveraging the Usability and the Functionality
of Search Paradigm in Relational Databases

Hao Wu
Supervised by Prof. Lizhu Zhou

Department of Computer Science and Technology,
Tsinghua National Laboratory for Information Science and Technology,

Tsinghua University, Beijing 100084, China

haowu06@mails.tsinghua.edu.cn

ABSTRACT
Querying, or searching, is one of the most important issues
in relational databases. There are many search paradigms,
such as Structured Query Language (SQL), keyword search,
and form search, a.k.a. Query-By-Example (QBE). Among
them, QBE is a good trade-off between usability and func-
tionality. However, existing QBE systems are often incon-
venient for users to compose high-quality queries quickly.
In this PhD workshop paper we investigate the problem of

improving the usability of form-based interfaces by enabling
them to (1) response a query in real time and (2) tolerate
the misplacing of keywords among input boxes. We give
the research challenges for achieving high performance and
scalability, and introduce two of our prototype systems.

1. INTRODUCTION
Nowadays, relational databases are widely adopted by ap-

plications from various domains, and different search para-
digms are needed by different users. Experienced users, such
as database administrators, need a search paradigm that can
provide them accurate and fully functional accessing abili-
ties. In contrast, most of unexperienced users, such as casual
Internet users, hope to search databases as easily as possi-
ble. Besides, some users, such as system analysts, call for
new search paradigms that leverage the usability (ease of
use) and functionality (expressive power of queries).
In early days, people could only use Structured Query

Language (SQL) [5], which is a declarative programming
language designed for managing relational data, to access
databases. Although SQL is a powerful tool to precisely ex-
press users’ query intents and control the manner of result
display, it is not suitable for casual users because of its com-
plexity and the requirement of programming skill. In other
words, it has a low usability for casual users.

.

In recent years, keyword search has become a popular
tool to access structured and semi-structured data, such as
relational databases and XML documents [6]. Compared
with SQL, this search paradigm is extremely easy to use: a
user can find her answers only by typing in several keywords
in a single input box. However, its functionality is limited
by the semantic ambiguity of keywords: a single keyword
may refer to different entities, and multiple keywords may
refer to a single entity as well. The system could hardly
guess a user’s accurate intent without any prior knowledge.
For example, if we want to find all papers whose titles con-
tain the word “database” with CompleteSearch1 [2], which
is a search engine on the Computer Science Bibliography
(DBLP)2 dataset, and pose the keyword “database” as the
query to the system, then some of the top-ranked results are
irrelevant because in each of them the word is contained in
conference name instead of paper’s title. Another example is
that, if we want to find all of Wei Wang’s publications, and
simply input “wei wang” as the query to CompelteSearch,
none of the top 20 results are relevant because the system
interprets “wei” and “wang” as two names.

Among various search paradigms, a good trade-off be-
tween usability and functionality is the so-called Query-By-
Example (QBE) [33], which uses previously defined forms as
query interfaces. A form usually has multiple input boxes
in which users can fill with keywords or drop-down lists for
users to select from. Using separated input fields in a form,
a user can composite her query more precisely than using
a single input box, in which users could only put all their
keywords in one place. In a regular QBE-based application,
the system first translates the filled form into a structured
query, e.g. an SQL statement, and then retrieves the re-
sults from the underlying database. This paradigm is more
easy-to-use than SQL for causal users, and it is also more
expressive and controllable than keyword search with a sin-
gle input box for experienced users. As a result, QBE has
been widely adopted for querying underlying data in real ap-
plications, e.g. eBay Advanced Search3, PubMed Advanced
Search4, and IMDB Power Search5, etc.

1 http://dblp.mpi-inf.mpg.de/dblp
2 http://www.informatik.uni-trier.de/~ley/db
3 http://shop.ebay.com/ebayadvsearch
4 http://www.ncbi.nlm.nih.gov/pubmed/advanced
5 http://www.imdb.com/list

36

http://dblp.mpi-inf.mpg.de/dblp
http://www.informatik.uni-trier.de/~ley/db
http://shop.ebay.com/ebayadvsearch
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.imdb.com/list
uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore



However, traditional QBE-based systems have one inher-
ent limitation as well: the usability of a form is not satisfac-
tory. Firstly, since the user should first compose a complete
query and then submit it to the system, it is often a boring
and time-consuming job to find expected results: the user
have to repeatedly refine the query, submit the new query,
and check the returned results, for many times. Secondly,
since there are separated input fields on the form, the errors
of misplacing keywords can hardly be avoided. We cannot
assume that all users would always input their query condi-
tions into correct input fields.
In this paper, we investigate the problems of improving

the usability for form-style interfaces. The new features re-
quire more computational resource and storage, so scalabil-
ity is also a critical issue. Our basic ideas are as follows.

Search-as-you-type. Search-as-you-type is a user-friendly
feature which can reduce the efforts of users to refine their
queries by returning the results instantly as users type in
letters. Existing works [21, 24] on featuring keyword-search
systems with search-as-you-type focus on single-input-box
interfaces. The advantages of enabling this feature are more
obvious in form-style interfaces. Firstly, since a form often
consists of multiple input boxes, a user may have to take
more effort to refine her query. With the search-as-you-type
feature, a user could see the results at once when she gives
her query a modification, thus the inconvenience of refining
a query in the form can be greatly reduced. Secondly, this
feature could also enable the faceted search ability of forms.
We will discuss these in more detail in Section 2.1.

Tolerate the misplacing of keywords. One of the biggest
problems of existing form-based search systems is that they
cannot tolerate the misplacing of keywords. What should
the system do if a user inputs a person’s name into the
input box for the movie title? In addition, consider an ex-
treme condition: when a user types all her keywords into
one input box, the form-style interface would reduce to the
single-input-box interface. That is to say, if we solve the
problem of tolerating the misplacing of keywords in forms,
we could take the advantages of both of the form and the
single-input-box interface. We investigate two possible so-
lutions to address this problem in Section 2.2.

Improve the scalability. Both of the above two features
rely on efficient algorithms and effective index structures. If
a dataset gets too large, both of the algorithm efficiency and
the index size may become unsatisfactory (see the efficiency
and scalability evaluations of our initial work in Section 3.2).
As a result, we must consider novel algorithms that could
handle large datasets. The basic idea is to make use of the
DBMS itself or to derive top-k algorithms. We will discuss
these in more detail in Section 2.3.

To address the main problems and validate some of our
plans, we proposed Seaform (stands for Search-As-You-Type
in Forms), which is a new search paradigm that supports
search-as-you-type feature in form-style interfaces. We also
developed two prototype systems in this paradigm and de-
ployed them as web applications6: (1) Seaform-DBLP, which
searches 1.3 million computer science publications on the
DBLP dataset by Title, Authors, Conference/Journal Name,
and Year, and (2) Seaform-IMDB, which searches over 500
thousand movies on the Internet Movie Database (IMDB)7

6 http://tastier.cs.tsinghua.edu.cn/seaform.
7 http://www.imdb.com

dataset by Title, Actors/Actresses, Directors, and Year. The
screenshot of Seaform-DBLP is shown in Figure 1.

The remainder of the paper is organized as follows. In
Section 2 we provide an overview of the problems and give
the research challenges and our plans. In Section 3, we de-
scribe Seaform, which is our initial work on featuring the
search-as-you-type to form-style interfaces over single table
datasets. We review related works in Section 4. Finally, we
conclude the paper in Section 5.

Figure 1: Screenshot of Seaform-DBLP.

2. PROBLEM STATEMENT
We first consider the case that the database has only one

relational table (the case of multiple tables will be discussed
in Section 2.4). The table has several searchable attributes,
such as Title, Name, etc., by which users can search for de-
sired tuples. To enable the faceted search ability (see Sec-
tion 2.1), we split the original table into several local tables,
each for a specified searchable attribute. A local table stores
all the distinct values of the attribute. Each record in a local
table is called a local record, and is assigned with a local id.
Accordingly, the original table is called the global table, in
which each record is called a global record and is assigned
with a global id. We associate each local table with one or
more input boxes in the form.

A query of a form-style interface is segmented into a set
of fields, each of them contains the query string of the cor-
responding input box. For example, a query (Author:“wei
wang”,Title:“data”) has two fields: one contains “wei wang”
that belongs to the Author input box, the other contains
“data” that belongs to the Title input box. Each keyword
in the query denotes a prefix of a word in the dataset.

For each query triggered by a keystroke in an input box,
the system returns not only the global ids, called the global
results, but also the matched local ids in the corresponding
local table, called the local results, to the user in real time.
For example, as is shown in Figure 1, if we type “wei wang”
in the Author input box, the system returns the names of
matched authors (local results) below the form, such as Wei
Wang, Weixing Wang, etc., and their publications (global
results) on the right side.

Sometimes a user may put some of her keywords into in-
correct input boxes. For example, in Seaform-DBLP, a user
may input “wei wang data” in the Title input box, in which

37

http://tastier.cs.tsinghua.edu.cn/seaform
http://www.imdb.com


“wei wang” is supposed to be an author’s name. The system
should tolerate the error of misplacing “wei wang” into the
wrong input box by enumerating all the possible keyword-
to-input-box mappings, each of which is called an interpreta-
tion, and then showing them to the user by a descending or-
der of possibilities. In the above example, two of the possible
interpretations are (Author:“wei wang”,Title:“data”) and
(Author:“wei wang”,Venue:“data”). The system shows these
interpretations as a list to the user to choose from.

2.1 SearchAsYouType
With the help of the search-as-you-type feature, a user

can get the search result instantly when she modifies her
query. Besides, enabling search-as-you-type could also let
users benefit from another interesting feature: the real-time
faceted search. Faceted search, also called faceted naviga-
tion or faceted browsing, is a technique which provides an
on-the-fly categorization ability to the system to make the
underlying data more comprehensible to users [12]. For ex-
ample, CompleteSearch can group the result publications
by Author, Venue, or Year according to the query keywords.
A form with search-as-you-type feature inherently has this
faceted search ability. For example in Figure 1, by displaying
the matched authors according to “wei wang”, the system
groups the publications by authors. A user can navigate the
results by clicking on one of those authors, and get a deeper
understanding about the dataset.
Enabling the search-as-you-type feature to form-style in-

terfaces is not trivial. Generally, there are two challenges
to achieve this goal. Firstly, as we wish the system to re-
turn both of the local results and the global results simul-
taneously in real time, we will encounter the challenge of
accelerating the speed of synchronization:

Challenge 1: Synchronization Speed

The local results of an input box cannot be retrieved
only according to the keywords in the current input box,
but should also be constrained the keywords in other in-
put boxes. For example, as is shown in Figure 1, if we
input “pattern” in Title and then type “wei wang” in Au-
thor, the author Weizhao Wang is not included in the local
results, although it matches the keywords “wei wang”, be-
cause this author does not have a paper whose title contains
“pattern”. We call the process of filtering out the false
matched local records synchronization. A straightforward
way is to retrieve the global results according to all the in-
put boxes, and then check each local record that matches the
keywords in the currently editing input box to see whether it
appears in a result global record to filter out false positives.
But this method cannot satisfy the requirement of real-time
response of search-as-you-type feature. Our initial works
proposed on-demand synchronization, and our experiments
show that it can greatly accelerate the overall search speed
(see Section 3.2). However, in some cases, e.g. the set of
global results is very large, our on-demand synchronization
paradigm would also be inefficient.

Secondly, an effective index and its corresponding efficient
search algorithms for large datasets are necessary:

Challenge 2: Effective Index

Existing works on search-as-you-type in single-input-boxes
use trie structures to index all the prefixes of keywords and
use inverted lists to store corresponding record ids for each
keyword [21, 24]. However, the situation is more compli-

cated in form-style interfaces because (1) we need to return
the local results and the global results simultaneously and
(2) we also need to perform synchronization. In our initial
work (see Section 3.2), we introduce dual-list tries to index
the ids of both the local records and the global records in
which a keyword appears. Our experimental results show
that the search algorithm is 2 times faster than using the
classical single-list tries. However, a dual-list trie often re-
quires more storage than a single-list trie, so it is a trade-off
between space and efficiency. In addition, the need for an
effective index would get more urgent if we also take other
challenges, e.g. the scalability issue, into consideration.

2.2 Misplacing of Keywords
As is explained before, tolerating misplacing of keywords

is a necessary feature for a form-style interface. As a user
inputs her query keywords into the input boxes, the system
should enumerate all the possible interpretations and then
sort them according to their possibilities. This enumera-
tion process requires both of high accuracy and high perfor-
mance if we retain the search-as-you-type feature. Thus the
challenge is that how to find the interpretations as fast as
possible, referred to interpret-as-you-type.

Challenge 3: Interpret-As-You-Type

One of the possible methods is based on statistical anal-
ysis, i.e. to estimate the probability of each interpretation.
There are two issues for us to consider: (1) how to measure
the probability, and (2) how to permutate all the possible
interpretations quickly and sort them in descending order
according to their probabilities. For the first issue, we could
assume that each keyword are independent to others, thus
the calculation would be simple. However, this indepen-
dence assumption is often too strict: some keywords may
belong to the same phrase. For the second issue, the inde-
pendence assumption may lead to performance problems be-
cause the search space of interpretations may get very large.
However, the above method has a limitation: the estimation
could not be accurate enough. So we should consider other
methods in a different way.

Another possible method is based on on-the-fly search.
Given a query posed by the user, the system permutates
all the possible interpretations, and then performs an on-
the-fly search for each of the them. Obviously, this method
leads to high computational overhead. So it is necessary
to (1) reduce the search space, (2) design effective pruning
techniques, and (3) devise an incremental algorithm. Note
that the performance of this method also depends on the
efficiency of the basic form search algorithm itself.

In addition, consider an extreme condition that the user
types all her keywords in just one input box in the form. The
situation is similar to traditional single-input-box keyword
search. The difference is that the system should not only
return the results, but also provide the interpretations to
the user, and all these tasks require high response speed.

2.3 Scalability
Our initial work shows that both of the index size and the

response time increase linearly as the dataset gets larger (see
Section 3.2). When the size of the dataset is too large, we
cannot store the index in the main memory. In this case, it
is necessary to investigate other ways to build the index, as
well as more scalable search algorithms. We investigate two

38



of the possible solutions to this issue: (1) use native DBMS
support and (2) design a top-k algorithm.

Challenge 4: Native DBMS Support

When data is stored in a relational database, it is natural
to use SQLs to perform the searching. In this way, the
system would require less efforts to deploy and less main
memory to run. In addition, we could also pay less attention
on reducing the index size, since the storage and retrieval
algorithms are already carefully designed and chosen in the
system natively. That is to say, we only put them all in
the DBMS, and then use DBMS capabilities to support the
two new features. Nevertheless, how to maintain the data
and the indexes, as well as how to design a high-performance
search algorithm, are still need to be take into consideration.
As described before, the whole search process can be divided
to three sub-tasks: (1) search for local results, (2) search for
global results, and (3) synchronization.
The first two sub-tasks are similar to the classical search-

as-you-type in single-input-boxes. As existing works search-
as-you-type with single-input-boxes use trie structures to
index all the prefixes of keywords, we can ‘serialize’ each
of the trie structures into a relational table: we store the
(prefix,record id) tuples for all of the keywords in all of
the records. The real challenge is that how can we use SQLs
and the indexed (prefix,record id) tuples to retrieve the
local/global results and perform the synchronization opera-
tion quickly, due to the fact that often the performance of
executing a complex SQL query in the DBMS is not high
enough for real time responses.

Challenge 5: Top-k Algorithms

As is mentioned before, our initial work shows that, the
query time (running time of search algorithm) increases lin-
early with the growth of the dataset. In another word, the
algorithm incorporated by our initial work can hardly be
adapted to handle large datasets, since we need to achieve
high interactive speed. Traditional keyword search algo-
rithms incorporate top-k algorithms to guarantee that the
query time increases sub-linearly as dataset grows. With a
top-k search algorithm, given a user-defined parameter k,
the system returns only k top-ranked results, instead of all
of them to the user. Because many unnecessary computa-
tions to retrieve the results with low ranking scores can be
avoided, the overall query time can be improved. However,
specifically, for search-as-you-type in forms, the problem is
a little bit more complex: since the system returns the lo-
cal results and the global results at the same time, there
should be 2 parameters, l and k, with which we could con-
trol the amount of returned local results and global results
respectively. We call this kind of algorithm the top-(l, k)
algorithm. Recall that in the non-top-k case, we perform
the process of synchronization to filter out all false positive
local results according to retrieved global results. The ques-
tion in the top-(l, k) case is that, how can we perform the
synchronization without knowing all of the global results?
This is an open issue that needs to be addressed carefully.

2.4 Other Issues
Challenge 6: Informativeness of Local Results

Recall that search-as-you-type in forms inherently has the
ability of faceted search. That is, when a user types in some
keywords in an input box, besides the global results, the

system would also return the matched attribute values ac-
cording to the keywords in the current input box, which are
called local results. For example, if we input “wang” in the
Author input box in our Seaform-DBLP prototype system,
a list of names, such as “Wei Wang”, “Jun Wang”, etc., will
be also shown to us for faceted navigation. We call a local
result informative if it maps to many global results, for ex-
ample “Wei Wang” in the above example. In contrast, if we
input keywords in the Title input box, often a local result
can only maps to 1 or 2 global results, because it is rare that
two publications have the same title, especially if the title
is long. We say these local results are uninformative, which
have a very low necessity to display for faceted search. It
is possible to incorporate text mining techniques to group
these uninformative local results by meaningful phrases, and
then show these phrases as suggestions. However, how to de-
fine meaningfulness and how to obtain meaningful phrases
on-the-fly are also open issues to tackle.

Challenge 7: Multiple Tables

Most of the existing search-as-you-type systems, including
our Seaform-based prototype systems, use single relational
tables as their underlying data, whereas in real applications
a dataset usually has multiple tables. Traditional form-
based systems use pre-defined SQL to join all the matched
tuples together from different tables on the fly. Because of
the performance issue of the on-the-fly join using SQL, we
have to consider more efficient techniques that can handle
multiple tables to achieve a high interactive speed. In fact,
some of the techniques used in our prototype systems can
also be adapted to support multiple tables. However, the
scalability of our original algorithms are not good enough
because all the computations, including the costly on-the-fly
joins, should be performed in the main memory. If we want
to improve the scalability using, say, native DBMS support
or top-k algorithms, performing on-the-fly joins efficiently
would be getting even harder.

3. INITIAL ACHIEVEMENTS
We have proposed a new search paradigm, called Seaform

(stands for Search-As-You-Type in Forms), to address some
of the problems summarized in Section 2. We hvae also de-
veloped two prototype systems, Seaform-DBLP and Seaform-
IMDB. In this section, we briefly introduce (1) the main
features, (2) the underlying techniques, and (3) the current
status and future directions, of Seaform-based systems.

3.1 Main Features
A Seaform-based system takes a single relational table

as its underlying data. For example, the DBLP dataset is a
table with Title, Authors, Booktitle, Year, etc., as its columns,
and each row in this table refers to a publication. We will
illustrate 3 of the main features of a Seaform-based system
by providing several examples.

Feature 1: Precise search paradigm. Suppose a user
wants to find papers by Wei Wang whose titles contain the
word “pattern”. If she types in “wei wang pattern” in
CompleteSearch, many returned results are not very rele-
vant. In contrast, if she types in “wei wang” and “pattern”
in different input boxes in Seaform-DBLP, she can find high-
quality results.

Feature 2: Search-as-you-type. Suppose the user wants
to find the movie titled The Godfather made in 1972 using

39



the IMDB Power Search interface. She is not sure if there is
a space between the word “god” and the word “father”, so
she fills in the Title input box with “god father”. Unfortu-
nately, after waiting for several seconds, the user still does
not get relevant result. So she has to try a new query. In
contrast, in Seaform-IMDB, she can modify the query and
see the new results instantaneously.

Feature 3: Faceted search. Suppose the user has lim-
ited prior knowledge about the KDD conference and wants
to know more about it using Seaform-DBLP. At first, she
wants to know how many papers were published in this con-
ference each year. She types in “kdd” in the Venue input
box and then changes the editing focus to the Year input
box. The listed local results show the years sorted by the
number of published papers. Next, she wants to know who
published how many papers in KDD 2009. To do this, she
chooses the year 2009 by clicking on the list, and changes
the focus to the first Author input box. The list below the
form shows the authors. She can see that the most active
author. For instance, the author with the most publications
is Christos Faloutsos. She then chooses “Christos Falout-
sos” and changes the focus to the second Author input box.
Then all the co-authors are listed. After several rounds of
typing and clicking, the user can get a deeper understanding
about the conference.

3.2 Under the Hood
A Seaform-based system uses the client-server architec-

ture. On the client side, each keystroke event triggered by
the user in any of the input boxes invokes the JavaScript
code to issue an AJAX query to the server, and then the
client displays the results returned from the server with
query keywords highlighted. The server side has the follow-
ing components. The Indexer indexes the underlying data.
When a query is received, the Searcher searches the index
for both the global results and the local results incremen-
tally with the help of the Cache component, which caches
the previous queries and their results. The Result Composer
component ranks the results and sends them to the client.
All components are in a FastCGI module.
We build three types of indexes for each of the searchable

attributes: (1) a trie structure, which indexes all the pre-
fixes of keywords over all the attribute value strings and the
inverted lists of local ids; (2) a local-global mapping table,
which maps each local id to a list of global ids; and (3) a
global-local mapping table, which maps each global id to a
list of local ids. The trie structure are used for supporting
the search-as-you-type feature, and the last two tables are
used for synchronization.
We have designed two incremental search algorithms: one

is based on single-list trie (SL), which means that we only
attach the inverted list of local ids to the leaf nodes of tries,
and the other is based on dual-list trie (DL), which means
that we attach both of the inverted lists of local ids and
global ids to the leaf nodes of tries. Besides, we have also
designed the on-demand synchronization (OD) mechanism,
which means that we perform the synchronization operation
only when the user’s input focus is changed, as an alterna-
tive to the original brute-force synchronization (BF) mecha-
nism, i.e. to synchronize on every keystroke. We investigate
the performances of the four combinations, i.e. SL-BF, SL-
OD, DL-BF, and DL-OD, by comparing their average query
times of a workload of 45,276 real queries using the Seaform-

DBLP prototype system on a Intel Core-2 2.4GHz PC with
2GB of RAM. All the code were implemented in C++ and
compiled using Visual Studio 2008. The result shows that
the DL-OD combination is the fastest, which can response
a user’s query within 50 ms. on average (see Figure 2).

Figure 3 shows the scalability of Seaform-DBLP. As we
can see, both of the the index size and the average query
time would increase linearly with the growth of the dataset.
Although the index size will get slightly larger if we use DL
compared with that of using SL (10% larger), it is worthy to
choose the former because we can make the search 2 times
faster according to Figure 2.

 0

 20

 40

 60

 80

 100

 120

 140

A
vg

. q
ue

ry
 ti

m
e 

(m
s.

) SL-BF
SL-OD
DL-BF
DL-OD

Figure 2: Performances of the four combinations.

 0

 100

 200

 300

 400

 500

 2  4  6  8  10  12  14

In
de

x 
si

ze
 (

M
B

)

# of records (x 105)

Dual-list
Single-list

(a) Index sizes using SL/DL.

 0

 10

 20

 30

 40

 50

 2  4  6  8  10  12  14

A
vg

. q
ue

ry
 ti

m
e 

(m
s.

)

# of records (x 105)

(b) Avg. query time of DL-OD.

Figure 3: The scalability of Seaform-DBLP.

3.3 Current Status and Future Works
Our two prototype systems have been launched since Nov.,

2009. We have received over 40,000 queries from hundreds
of distinct IP addresses. Users’ feedbacks show that, when
a user wants to search for something accurately, our systems
can indeed make the task easier. Nevertheless, there are still
many works to do in the future.

Firstly, users reported that the returned local results of
Title input box cannot provide useful information for faceted
search because there are little publications/movies that have
the same title. We should summarize these local results into
groups to improve the faceted search ability. Secondly, our
systems support only AND-semantics for the queries. We
will investigate the OR-semantics and top-k algorithms in
the future to make the searching more flexible and efficient.
Thirdly, we should also tolerate misplacing of keywords to
leverage the simplicity and usability of forms.

4. RELATED WORKS
Query-By-Example [33] is the earliest paradigm that could

enable a user query a database without using SQLs. The ba-
sic idea is to provide a form with input boxes and drop-down
lists for the user to fill in with, and convert the filled form
to SQL statements to retrieve the results.

40



In recent years, keyword search has been used as a novel
search paradigm in structured and semi-structured databases
[6]. There are two categories of techniques: one is based on
candidate networks [1, 16, 15, 25, 26, 30], and the other
is based on data graphs [4, 22, 10, 14]. Some of these
works, such as [15, 26, 14], support OR-semantics and top-
k queries. In the scenario of using form-style interfaces, to
our best knowledge, there is no existing works on supporting
these features. See [17] for a good survey of the algorithms
that answer top-k queries.
Utilizing search-as-you-type feature in forms is inspired by

the existing works on Autocomplete [18, 13, 28, 29], type-
ahead keyword search [21, 24], and the CompleteSearch [2].
These works are all based on single-input-box interfaces.
Faceted search [12, 27, 8, 9, 31], originally proposed in

the information retrieval community, provides users a con-
venient way to navigate the dataset by drilling down or up
on a dynamically computed structure. In the database com-
munity, [3] enables a navigational technique for relational
databases on faceted search. [2] and [11] also provide faceted
search interfaces over the DBLP dataset. In addition, [23]
and [32] enable users to navigate the underlying dataset by
choosing one of the frequently occurred terms.
There are also recent works on keyword search in form-

style interfaces, in which [19, 20] focused on form creation,
and [7] focused on finding the most possible interfaces for
keyword search. Compared with them, our works focus on
enabling the search-as-you-type feature to the form.

5. CONCLUSIONS
In this paper, we analyze three paradigms to access rela-

tional databases: SQL, QBE, and keyword search, and in-
vestigate the problems and challenges of enabling the search-
as-you-type feature to form-style interfaces. The challenges
include: (1) increase the usability of forms, and (2) improve
the scalability of the search-as-you-type algorithms of forms.
We illustrate our recently developed prototype systems, and
point out some possible future works. In a word, the form
with the search-as-you-type feature is a nice interface for
access relational databases, and there are also important
problems that need to be addressed in the future.

6. ACKNOWLEDGEMENTS
This work is partially supported by the National Natural

Science Foundation of China under Grant No. 60873065,
the National High Technology Development 863 Program
of China under Grant No. 2009AA011906, and the National
Grand Fundamental Research 973 Program of China under
Grant No. 2006CB303103.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system

for keyword-based search over relational databases. In ICDE,
pages 5–16, 2002.

[2] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In SIGIR, pages
364–371, 2006.

[3] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania.
Minimum-effort driven dynamic faceted search in structured
databases. In CIKM, pages 13–22, 2008.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In ICDE, pages 431–440, 2002.

[5] D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured
english query language. In SIGMOD Workshop, Vol. 1, pages
249–264, 1974.

[6] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on
structured and semi-structured data. In SIGMOD Conference,
pages 1005–1010, 2009.

[7] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton.
Combining keyword search and forms for ad hoc querying of
databases. In SIGMOD Conference, pages 349–360, 2009.

[8] W. Dakka, P. G. Ipeirotis, and K. R. Wood. Automatic
construction of multifaceted browsing interfaces. In CIKM,
pages 768–775, 2005.

[9] W. Dakka, P. G. Ipeirotis, and K. R. Wood. Faceted browsing
over large databases of text-annotated objects. In ICDE, pages
1489–1490, 2007.

[10] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search
on external memory data graphs. PVLDB, 1(1):1189–1204,
2008.

[11] J. Diederich and W.-T. Balke. The semantic growbag
algorithm: Automatically deriving categorization systems. In
ECDL, pages 1–13, 2007.

[12] J. English, M. A. Hearst, R. R. Sinha, K. Swearingen, and
K.-P. Yee. Hierarchical faceted metadata in site search
interfaces. In CHI Extended Abstracts, pages 628–639, 2002.

[13] K. Grabski and T. Scheffer. Sentence completion. In SIGIR,
pages 433–439, 2004.

[14] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked
keyword searches on graphs. In SIGMOD Conference, pages
305–316, 2007.

[15] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-style keyword search over relational databases. In VLDB,
pages 850–861, 2003.

[16] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
search in relational databases. In VLDB, pages 670–681, 2002.

[17] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k
query processing techniques in relational database systems.
ACM Comput. Surv., 40(4):1–58, 2008.

[18] M. Jakobsson. Autocompletion in full text transaction entry: a
method for humanized input. SIGCHI Bull., 17(4):327–332,
1986.

[19] M. Jayapandian and H. V. Jagadish. Automated creation of a
forms-based database query interface. PVLDB, 1(1):695–709,
2008.

[20] M. Jayapandian and H. V. Jagadish. Automating the design
and construction of query forms. IEEE Trans. Knowl. Data
Eng., 21(10):1389–1402, 2009.

[21] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371–380, 2009.

[22] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
and H. Karambelkar. Bidirectional expansion for keyword
search on graph databases. In VLDB, pages 505–516, 2005.

[23] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data clouds:
summarizing keyword search results over structured data. In
EDBT, pages 391–402, 2009.

[24] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on
relational data: A TASTIER approach. In SIGMOD
Conference, pages 695–706, 2009.

[25] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In SIGMOD
Conference, pages 563–574, 2006.

[26] Y. Luo, X. Lin, W. W. 0011, and X. Zhou. SPARK: top-k
keyword query in relational databases. In SIGMOD
Conference, pages 115–126, 2007.

[27] I. Martin and J. M. Jose. A personalised information retrieval
tool. In SIGIR, pages 423–424, 2003.

[28] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD Conference, pages
1156–1158, 2007.

[29] A. Nandi and H. V. Jagadish. Effective phrase prediction. In
VLDB, pages 219–230, 2007.

[30] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases:
the power of RDBMS. In SIGMOD Conference, pages 681–694,
2009.

[31] E. Stoica, M. A. Hearst, and M. Richardson. Automating
creation of hierarchical faceted metadata structures. In
HLT-NAACL, pages 244–251, 2007.

[32] Y. Tao and J. X. Yu. Finding frequent co-occurring terms in
relational keyword search. In EDBT, pages 839–850, 2009.

[33] M. M. Zloof. Query-by-example: the invocation and definition
of tables and forms. In VLDB, pages 1–24, 1975.

41




